You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
7.3 KiB
266 lines
7.3 KiB
*> \brief \b DGBTRS
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGBTRS + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbtrs.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbtrs.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbtrs.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANS
|
|
* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGBTRS solves a system of linear equations
|
|
*> A * X = B or A**T * X = B
|
|
*> with a general band matrix A using the LU factorization computed
|
|
*> by DGBTRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies the form of the system of equations.
|
|
*> = 'N': A * X = B (No transpose)
|
|
*> = 'T': A**T* X = B (Transpose)
|
|
*> = 'C': A**T* X = B (Conjugate transpose = Transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AB
|
|
*> \verbatim
|
|
*> AB is DOUBLE PRECISION array, dimension (LDAB,N)
|
|
*> Details of the LU factorization of the band matrix A, as
|
|
*> computed by DGBTRF. U is stored as an upper triangular band
|
|
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
|
|
*> the multipliers used during the factorization are stored in
|
|
*> rows KL+KU+2 to 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices; for 1 <= i <= N, row i of the matrix was
|
|
*> interchanged with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On entry, the right hand side matrix B.
|
|
*> On exit, the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleGBcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANS
|
|
INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LNOTI, NOTRAN
|
|
INTEGER I, J, KD, L, LM
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMV, DGER, DSWAP, DTBSV, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
|
$ LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KL.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( KU.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGBTRS', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 .OR. NRHS.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
KD = KU + KL + 1
|
|
LNOTI = KL.GT.0
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* Solve A*X = B.
|
|
*
|
|
* Solve L*X = B, overwriting B with X.
|
|
*
|
|
* L is represented as a product of permutations and unit lower
|
|
* triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
|
|
* where each transformation L(i) is a rank-one modification of
|
|
* the identity matrix.
|
|
*
|
|
IF( LNOTI ) THEN
|
|
DO 10 J = 1, N - 1
|
|
LM = MIN( KL, N-J )
|
|
L = IPIV( J )
|
|
IF( L.NE.J )
|
|
$ CALL DSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
|
|
CALL DGER( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
|
|
$ LDB, B( J+1, 1 ), LDB )
|
|
10 CONTINUE
|
|
END IF
|
|
*
|
|
DO 20 I = 1, NRHS
|
|
*
|
|
* Solve U*X = B, overwriting B with X.
|
|
*
|
|
CALL DTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
|
|
$ AB, LDAB, B( 1, I ), 1 )
|
|
20 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Solve A**T*X = B.
|
|
*
|
|
DO 30 I = 1, NRHS
|
|
*
|
|
* Solve U**T*X = B, overwriting B with X.
|
|
*
|
|
CALL DTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
|
|
$ LDAB, B( 1, I ), 1 )
|
|
30 CONTINUE
|
|
*
|
|
* Solve L**T*X = B, overwriting B with X.
|
|
*
|
|
IF( LNOTI ) THEN
|
|
DO 40 J = N - 1, 1, -1
|
|
LM = MIN( KL, N-J )
|
|
CALL DGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
|
|
$ LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
|
|
L = IPIV( J )
|
|
IF( L.NE.J )
|
|
$ CALL DSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DGBTRS
|
|
*
|
|
END
|
|
|