You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1780 lines
71 KiB
1780 lines
71 KiB
*> \brief \b DGEJSV
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGEJSV + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
|
|
* M, N, A, LDA, SVA, U, LDU, V, LDV,
|
|
* WORK, LWORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* IMPLICIT NONE
|
|
* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
|
|
* $ WORK( LWORK )
|
|
* INTEGER IWORK( * )
|
|
* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
|
|
*> matrix [A], where M >= N. The SVD of [A] is written as
|
|
*>
|
|
*> [A] = [U] * [SIGMA] * [V]^t,
|
|
*>
|
|
*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
|
|
*> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
|
|
*> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
|
|
*> the singular values of [A]. The columns of [U] and [V] are the left and
|
|
*> the right singular vectors of [A], respectively. The matrices [U] and [V]
|
|
*> are computed and stored in the arrays U and V, respectively. The diagonal
|
|
*> of [SIGMA] is computed and stored in the array SVA.
|
|
*> DGEJSV can sometimes compute tiny singular values and their singular vectors much
|
|
*> more accurately than other SVD routines, see below under Further Details.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBA
|
|
*> \verbatim
|
|
*> JOBA is CHARACTER*1
|
|
*> Specifies the level of accuracy:
|
|
*> = 'C': This option works well (high relative accuracy) if A = B * D,
|
|
*> with well-conditioned B and arbitrary diagonal matrix D.
|
|
*> The accuracy cannot be spoiled by COLUMN scaling. The
|
|
*> accuracy of the computed output depends on the condition of
|
|
*> B, and the procedure aims at the best theoretical accuracy.
|
|
*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is
|
|
*> bounded by f(M,N)*epsilon* cond(B), independent of D.
|
|
*> The input matrix is preprocessed with the QRF with column
|
|
*> pivoting. This initial preprocessing and preconditioning by
|
|
*> a rank revealing QR factorization is common for all values of
|
|
*> JOBA. Additional actions are specified as follows:
|
|
*> = 'E': Computation as with 'C' with an additional estimate of the
|
|
*> condition number of B. It provides a realistic error bound.
|
|
*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
|
|
*> D1, D2, and well-conditioned matrix C, this option gives
|
|
*> higher accuracy than the 'C' option. If the structure of the
|
|
*> input matrix is not known, and relative accuracy is
|
|
*> desirable, then this option is advisable. The input matrix A
|
|
*> is preprocessed with QR factorization with FULL (row and
|
|
*> column) pivoting.
|
|
*> = 'G': Computation as with 'F' with an additional estimate of the
|
|
*> condition number of B, where A=D*B. If A has heavily weighted
|
|
*> rows, then using this condition number gives too pessimistic
|
|
*> error bound.
|
|
*> = 'A': Small singular values are the noise and the matrix is treated
|
|
*> as numerically rank deficient. The error in the computed
|
|
*> singular values is bounded by f(m,n)*epsilon*||A||.
|
|
*> The computed SVD A = U * S * V^t restores A up to
|
|
*> f(m,n)*epsilon*||A||.
|
|
*> This gives the procedure the licence to discard (set to zero)
|
|
*> all singular values below N*epsilon*||A||.
|
|
*> = 'R': Similar as in 'A'. Rank revealing property of the initial
|
|
*> QR factorization is used do reveal (using triangular factor)
|
|
*> a gap sigma_{r+1} < epsilon * sigma_r in which case the
|
|
*> numerical RANK is declared to be r. The SVD is computed with
|
|
*> absolute error bounds, but more accurately than with 'A'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBU
|
|
*> \verbatim
|
|
*> JOBU is CHARACTER*1
|
|
*> Specifies whether to compute the columns of U:
|
|
*> = 'U': N columns of U are returned in the array U.
|
|
*> = 'F': full set of M left sing. vectors is returned in the array U.
|
|
*> = 'W': U may be used as workspace of length M*N. See the description
|
|
*> of U.
|
|
*> = 'N': U is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBV
|
|
*> \verbatim
|
|
*> JOBV is CHARACTER*1
|
|
*> Specifies whether to compute the matrix V:
|
|
*> = 'V': N columns of V are returned in the array V; Jacobi rotations
|
|
*> are not explicitly accumulated.
|
|
*> = 'J': N columns of V are returned in the array V, but they are
|
|
*> computed as the product of Jacobi rotations. This option is
|
|
*> allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
|
|
*> = 'W': V may be used as workspace of length N*N. See the description
|
|
*> of V.
|
|
*> = 'N': V is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBR
|
|
*> \verbatim
|
|
*> JOBR is CHARACTER*1
|
|
*> Specifies the RANGE for the singular values. Issues the licence to
|
|
*> set to zero small positive singular values if they are outside
|
|
*> specified range. If A .NE. 0 is scaled so that the largest singular
|
|
*> value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
|
|
*> the licence to kill columns of A whose norm in c*A is less than
|
|
*> DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
|
|
*> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
|
|
*> = 'N': Do not kill small columns of c*A. This option assumes that
|
|
*> BLAS and QR factorizations and triangular solvers are
|
|
*> implemented to work in that range. If the condition of A
|
|
*> is greater than BIG, use DGESVJ.
|
|
*> = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
|
|
*> (roughly, as described above). This option is recommended.
|
|
*> ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*> For computing the singular values in the FULL range [SFMIN,BIG]
|
|
*> use DGESVJ.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBT
|
|
*> \verbatim
|
|
*> JOBT is CHARACTER*1
|
|
*> If the matrix is square then the procedure may determine to use
|
|
*> transposed A if A^t seems to be better with respect to convergence.
|
|
*> If the matrix is not square, JOBT is ignored. This is subject to
|
|
*> changes in the future.
|
|
*> The decision is based on two values of entropy over the adjoint
|
|
*> orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
|
|
*> = 'T': transpose if entropy test indicates possibly faster
|
|
*> convergence of Jacobi process if A^t is taken as input. If A is
|
|
*> replaced with A^t, then the row pivoting is included automatically.
|
|
*> = 'N': do not speculate.
|
|
*> This option can be used to compute only the singular values, or the
|
|
*> full SVD (U, SIGMA and V). For only one set of singular vectors
|
|
*> (U or V), the caller should provide both U and V, as one of the
|
|
*> matrices is used as workspace if the matrix A is transposed.
|
|
*> The implementer can easily remove this constraint and make the
|
|
*> code more complicated. See the descriptions of U and V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBP
|
|
*> \verbatim
|
|
*> JOBP is CHARACTER*1
|
|
*> Issues the licence to introduce structured perturbations to drown
|
|
*> denormalized numbers. This licence should be active if the
|
|
*> denormals are poorly implemented, causing slow computation,
|
|
*> especially in cases of fast convergence (!). For details see [1,2].
|
|
*> For the sake of simplicity, this perturbations are included only
|
|
*> when the full SVD or only the singular values are requested. The
|
|
*> implementer/user can easily add the perturbation for the cases of
|
|
*> computing one set of singular vectors.
|
|
*> = 'P': introduce perturbation
|
|
*> = 'N': do not perturb
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the input matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the input matrix A. M >= N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SVA
|
|
*> \verbatim
|
|
*> SVA is DOUBLE PRECISION array, dimension (N)
|
|
*> On exit,
|
|
*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
|
|
*> computation SVA contains Euclidean column norms of the
|
|
*> iterated matrices in the array A.
|
|
*> - For WORK(1) .NE. WORK(2): The singular values of A are
|
|
*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
|
|
*> sigma_max(A) overflows or if small singular values have been
|
|
*> saved from underflow by scaling the input matrix A.
|
|
*> - If JOBR='R' then some of the singular values may be returned
|
|
*> as exact zeros obtained by "set to zero" because they are
|
|
*> below the numerical rank threshold or are denormalized numbers.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is DOUBLE PRECISION array, dimension ( LDU, N ) or ( LDU, M )
|
|
*> If JOBU = 'U', then U contains on exit the M-by-N matrix of
|
|
*> the left singular vectors.
|
|
*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
|
|
*> the left singular vectors, including an ONB
|
|
*> of the orthogonal complement of the Range(A).
|
|
*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
|
|
*> then U is used as workspace if the procedure
|
|
*> replaces A with A^t. In that case, [V] is computed
|
|
*> in U as left singular vectors of A^t and then
|
|
*> copied back to the V array. This 'W' option is just
|
|
*> a reminder to the caller that in this case U is
|
|
*> reserved as workspace of length N*N.
|
|
*> If JOBU = 'N' U is not referenced, unless JOBT='T'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U, LDU >= 1.
|
|
*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is DOUBLE PRECISION array, dimension ( LDV, N )
|
|
*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
|
|
*> the right singular vectors;
|
|
*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
|
|
*> then V is used as workspace if the procedure
|
|
*> replaces A with A^t. In that case, [U] is computed
|
|
*> in V as right singular vectors of A^t and then
|
|
*> copied back to the U array. This 'W' option is just
|
|
*> a reminder to the caller that in this case V is
|
|
*> reserved as workspace of length N*N.
|
|
*> If JOBV = 'N' V is not referenced, unless JOBT='T'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V, LDV >= 1.
|
|
*> If JOBV = 'V' or 'J' or 'W', then LDV >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
|
|
*> On exit, if N > 0 .AND. M > 0 (else not referenced),
|
|
*> WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
|
|
*> that SCALE*SVA(1:N) are the computed singular values
|
|
*> of A. (See the description of SVA().)
|
|
*> WORK(2) = See the description of WORK(1).
|
|
*> WORK(3) = SCONDA is an estimate for the condition number of
|
|
*> column equilibrated A. (If JOBA = 'E' or 'G')
|
|
*> SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
|
|
*> It is computed using DPOCON. It holds
|
|
*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
|
|
*> where R is the triangular factor from the QRF of A.
|
|
*> However, if R is truncated and the numerical rank is
|
|
*> determined to be strictly smaller than N, SCONDA is
|
|
*> returned as -1, thus indicating that the smallest
|
|
*> singular values might be lost.
|
|
*>
|
|
*> If full SVD is needed, the following two condition numbers are
|
|
*> useful for the analysis of the algorithm. They are provided for
|
|
*> a developer/implementer who is familiar with the details of
|
|
*> the method.
|
|
*>
|
|
*> WORK(4) = an estimate of the scaled condition number of the
|
|
*> triangular factor in the first QR factorization.
|
|
*> WORK(5) = an estimate of the scaled condition number of the
|
|
*> triangular factor in the second QR factorization.
|
|
*> The following two parameters are computed if JOBT = 'T'.
|
|
*> They are provided for a developer/implementer who is familiar
|
|
*> with the details of the method.
|
|
*>
|
|
*> WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
|
|
*> of diag(A^t*A) / Trace(A^t*A) taken as point in the
|
|
*> probability simplex.
|
|
*> WORK(7) = the entropy of A*A^t.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> Length of WORK to confirm proper allocation of work space.
|
|
*> LWORK depends on the job:
|
|
*>
|
|
*> If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and
|
|
*> -> .. no scaled condition estimate required (JOBE = 'N'):
|
|
*> LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
|
|
*> ->> For optimal performance (blocked code) the optimal value
|
|
*> is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
|
|
*> block size for DGEQP3 and DGEQRF.
|
|
*> In general, optimal LWORK is computed as
|
|
*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).
|
|
*> -> .. an estimate of the scaled condition number of A is
|
|
*> required (JOBA='E', 'G'). In this case, LWORK is the maximum
|
|
*> of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
|
|
*> ->> For optimal performance (blocked code) the optimal value
|
|
*> is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
|
|
*> In general, the optimal length LWORK is computed as
|
|
*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF),
|
|
*> N+N*N+LWORK(DPOCON),7).
|
|
*>
|
|
*> If SIGMA and the right singular vectors are needed (JOBV = 'V'),
|
|
*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
|
|
*> -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
|
|
*> where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF,
|
|
*> DORMLQ. In general, the optimal length LWORK is computed as
|
|
*> LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON),
|
|
*> N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
|
|
*>
|
|
*> If SIGMA and the left singular vectors are needed
|
|
*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
|
|
*> -> For optimal performance:
|
|
*> if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
|
|
*> if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
|
|
*> where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
|
|
*> In general, the optimal length LWORK is computed as
|
|
*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
|
|
*> 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)).
|
|
*> Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or
|
|
*> M*NB (for JOBU = 'F').
|
|
*>
|
|
*> If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
|
|
*> -> if JOBV = 'V'
|
|
*> the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N).
|
|
*> -> if JOBV = 'J' the minimal requirement is
|
|
*> LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
|
|
*> -> For optimal performance, LWORK should be additionally
|
|
*> larger than N+M*NB, where NB is the optimal block size
|
|
*> for DORMQR.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(3,M+3*N)).
|
|
*> On exit,
|
|
*> IWORK(1) = the numerical rank determined after the initial
|
|
*> QR factorization with pivoting. See the descriptions
|
|
*> of JOBA and JOBR.
|
|
*> IWORK(2) = the number of the computed nonzero singular values
|
|
*> IWORK(3) = if nonzero, a warning message:
|
|
*> If IWORK(3) = 1 then some of the column norms of A
|
|
*> were denormalized floats. The requested high accuracy
|
|
*> is not warranted by the data.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value.
|
|
*> = 0: successful exit;
|
|
*> > 0: DGEJSV did not converge in the maximal allowed number
|
|
*> of sweeps. The computed values may be inaccurate.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleGEsing
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
|
|
*> DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
|
|
*> additional row pivoting can be used as a preprocessor, which in some
|
|
*> cases results in much higher accuracy. An example is matrix A with the
|
|
*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
|
|
*> diagonal matrices and C is well-conditioned matrix. In that case, complete
|
|
*> pivoting in the first QR factorizations provides accuracy dependent on the
|
|
*> condition number of C, and independent of D1, D2. Such higher accuracy is
|
|
*> not completely understood theoretically, but it works well in practice.
|
|
*> Further, if A can be written as A = B*D, with well-conditioned B and some
|
|
*> diagonal D, then the high accuracy is guaranteed, both theoretically and
|
|
*> in software, independent of D. For more details see [1], [2].
|
|
*> The computational range for the singular values can be the full range
|
|
*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
|
|
*> & LAPACK routines called by DGEJSV are implemented to work in that range.
|
|
*> If that is not the case, then the restriction for safe computation with
|
|
*> the singular values in the range of normalized IEEE numbers is that the
|
|
*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
|
|
*> overflow. This code (DGEJSV) is best used in this restricted range,
|
|
*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
|
|
*> returned as zeros. See JOBR for details on this.
|
|
*> Further, this implementation is somewhat slower than the one described
|
|
*> in [1,2] due to replacement of some non-LAPACK components, and because
|
|
*> the choice of some tuning parameters in the iterative part (DGESVJ) is
|
|
*> left to the implementer on a particular machine.
|
|
*> The rank revealing QR factorization (in this code: DGEQP3) should be
|
|
*> implemented as in [3]. We have a new version of DGEQP3 under development
|
|
*> that is more robust than the current one in LAPACK, with a cleaner cut in
|
|
*> rank deficient cases. It will be available in the SIGMA library [4].
|
|
*> If M is much larger than N, it is obvious that the initial QRF with
|
|
*> column pivoting can be preprocessed by the QRF without pivoting. That
|
|
*> well known trick is not used in DGEJSV because in some cases heavy row
|
|
*> weighting can be treated with complete pivoting. The overhead in cases
|
|
*> M much larger than N is then only due to pivoting, but the benefits in
|
|
*> terms of accuracy have prevailed. The implementer/user can incorporate
|
|
*> this extra QRF step easily. The implementer can also improve data movement
|
|
*> (matrix transpose, matrix copy, matrix transposed copy) - this
|
|
*> implementation of DGEJSV uses only the simplest, naive data movement.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
|
|
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
|
|
*> LAPACK Working note 169.
|
|
*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
|
|
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
|
|
*> LAPACK Working note 170.
|
|
*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
|
|
*> factorization software - a case study.
|
|
*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
|
|
*> LAPACK Working note 176.
|
|
*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
|
|
*> QSVD, (H,K)-SVD computations.
|
|
*> Department of Mathematics, University of Zagreb, 2008.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Bugs, examples and comments:
|
|
* =================================
|
|
*>
|
|
*> Please report all bugs and send interesting examples and/or comments to
|
|
*> drmac@math.hr. Thank you.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
|
|
$ M, N, A, LDA, SVA, U, LDU, V, LDV,
|
|
$ WORK, LWORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
IMPLICIT NONE
|
|
INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
|
|
$ WORK( LWORK )
|
|
INTEGER IWORK( * )
|
|
CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
|
|
* ..
|
|
*
|
|
* ===========================================================================
|
|
*
|
|
* .. Local Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
|
|
$ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,
|
|
$ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC
|
|
INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING
|
|
LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC,
|
|
$ L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
|
|
$ NOSCAL, ROWPIV, RSVEC, TRANSP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, DNRM2
|
|
INTEGER IDAMAX
|
|
LOGICAL LSAME
|
|
EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
|
|
$ DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
|
|
$ DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA
|
|
*
|
|
EXTERNAL DGESVJ
|
|
* ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
|
|
JRACC = LSAME( JOBV, 'J' )
|
|
RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC
|
|
ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
|
|
L2RANK = LSAME( JOBA, 'R' )
|
|
L2ABER = LSAME( JOBA, 'A' )
|
|
ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
|
|
L2TRAN = LSAME( JOBT, 'T' )
|
|
L2KILL = LSAME( JOBR, 'R' )
|
|
DEFR = LSAME( JOBR, 'N' )
|
|
L2PERT = LSAME( JOBP, 'P' )
|
|
*
|
|
IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
|
|
$ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
|
|
INFO = - 1
|
|
ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
|
|
$ LSAME( JOBU, 'W' )) ) THEN
|
|
INFO = - 2
|
|
ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
|
|
$ LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
|
|
INFO = - 3
|
|
ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN
|
|
INFO = - 4
|
|
ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
|
|
INFO = - 5
|
|
ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
|
|
INFO = - 6
|
|
ELSE IF ( M .LT. 0 ) THEN
|
|
INFO = - 7
|
|
ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
|
|
INFO = - 8
|
|
ELSE IF ( LDA .LT. M ) THEN
|
|
INFO = - 10
|
|
ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
|
|
INFO = - 13
|
|
ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
|
|
INFO = - 15
|
|
ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
|
|
& (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
|
|
& (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
|
|
& (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
|
|
& (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
|
|
& .OR.
|
|
& (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
|
|
& .OR.
|
|
& (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND.
|
|
& (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
|
|
& .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
|
|
& LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
|
|
& THEN
|
|
INFO = - 17
|
|
ELSE
|
|
* #:)
|
|
INFO = 0
|
|
END IF
|
|
*
|
|
IF ( INFO .NE. 0 ) THEN
|
|
* #:(
|
|
CALL XERBLA( 'DGEJSV', - INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return for void matrix (Y3K safe)
|
|
* #:)
|
|
IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
|
|
IWORK(1:3) = 0
|
|
WORK(1:7) = 0
|
|
RETURN
|
|
ENDIF
|
|
*
|
|
* Determine whether the matrix U should be M x N or M x M
|
|
*
|
|
IF ( LSVEC ) THEN
|
|
N1 = N
|
|
IF ( LSAME( JOBU, 'F' ) ) N1 = M
|
|
END IF
|
|
*
|
|
* Set numerical parameters
|
|
*
|
|
*! NOTE: Make sure DLAMCH() does not fail on the target architecture.
|
|
*
|
|
EPSLN = DLAMCH('Epsilon')
|
|
SFMIN = DLAMCH('SafeMinimum')
|
|
SMALL = SFMIN / EPSLN
|
|
BIG = DLAMCH('O')
|
|
* BIG = ONE / SFMIN
|
|
*
|
|
* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
|
|
*
|
|
*(!) If necessary, scale SVA() to protect the largest norm from
|
|
* overflow. It is possible that this scaling pushes the smallest
|
|
* column norm left from the underflow threshold (extreme case).
|
|
*
|
|
SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N))
|
|
NOSCAL = .TRUE.
|
|
GOSCAL = .TRUE.
|
|
DO 1874 p = 1, N
|
|
AAPP = ZERO
|
|
AAQQ = ONE
|
|
CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
|
|
IF ( AAPP .GT. BIG ) THEN
|
|
INFO = - 9
|
|
CALL XERBLA( 'DGEJSV', -INFO )
|
|
RETURN
|
|
END IF
|
|
AAQQ = DSQRT(AAQQ)
|
|
IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN
|
|
SVA(p) = AAPP * AAQQ
|
|
ELSE
|
|
NOSCAL = .FALSE.
|
|
SVA(p) = AAPP * ( AAQQ * SCALEM )
|
|
IF ( GOSCAL ) THEN
|
|
GOSCAL = .FALSE.
|
|
CALL DSCAL( p-1, SCALEM, SVA, 1 )
|
|
END IF
|
|
END IF
|
|
1874 CONTINUE
|
|
*
|
|
IF ( NOSCAL ) SCALEM = ONE
|
|
*
|
|
AAPP = ZERO
|
|
AAQQ = BIG
|
|
DO 4781 p = 1, N
|
|
AAPP = MAX( AAPP, SVA(p) )
|
|
IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
|
|
4781 CONTINUE
|
|
*
|
|
* Quick return for zero M x N matrix
|
|
* #:)
|
|
IF ( AAPP .EQ. ZERO ) THEN
|
|
IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
|
|
IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV )
|
|
WORK(1) = ONE
|
|
WORK(2) = ONE
|
|
IF ( ERREST ) WORK(3) = ONE
|
|
IF ( LSVEC .AND. RSVEC ) THEN
|
|
WORK(4) = ONE
|
|
WORK(5) = ONE
|
|
END IF
|
|
IF ( L2TRAN ) THEN
|
|
WORK(6) = ZERO
|
|
WORK(7) = ZERO
|
|
END IF
|
|
IWORK(1) = 0
|
|
IWORK(2) = 0
|
|
IWORK(3) = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Issue warning if denormalized column norms detected. Override the
|
|
* high relative accuracy request. Issue licence to kill columns
|
|
* (set them to zero) whose norm is less than sigma_max / BIG (roughly).
|
|
* #:(
|
|
WARNING = 0
|
|
IF ( AAQQ .LE. SFMIN ) THEN
|
|
L2RANK = .TRUE.
|
|
L2KILL = .TRUE.
|
|
WARNING = 1
|
|
END IF
|
|
*
|
|
* Quick return for one-column matrix
|
|
* #:)
|
|
IF ( N .EQ. 1 ) THEN
|
|
*
|
|
IF ( LSVEC ) THEN
|
|
CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
|
|
CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
|
|
* computing all M left singular vectors of the M x 1 matrix
|
|
IF ( N1 .NE. N ) THEN
|
|
CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
|
|
CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
|
|
CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
|
|
END IF
|
|
END IF
|
|
IF ( RSVEC ) THEN
|
|
V(1,1) = ONE
|
|
END IF
|
|
IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
|
|
SVA(1) = SVA(1) / SCALEM
|
|
SCALEM = ONE
|
|
END IF
|
|
WORK(1) = ONE / SCALEM
|
|
WORK(2) = ONE
|
|
IF ( SVA(1) .NE. ZERO ) THEN
|
|
IWORK(1) = 1
|
|
IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
|
|
IWORK(2) = 1
|
|
ELSE
|
|
IWORK(2) = 0
|
|
END IF
|
|
ELSE
|
|
IWORK(1) = 0
|
|
IWORK(2) = 0
|
|
END IF
|
|
IWORK(3) = 0
|
|
IF ( ERREST ) WORK(3) = ONE
|
|
IF ( LSVEC .AND. RSVEC ) THEN
|
|
WORK(4) = ONE
|
|
WORK(5) = ONE
|
|
END IF
|
|
IF ( L2TRAN ) THEN
|
|
WORK(6) = ZERO
|
|
WORK(7) = ZERO
|
|
END IF
|
|
RETURN
|
|
*
|
|
END IF
|
|
*
|
|
TRANSP = .FALSE.
|
|
L2TRAN = L2TRAN .AND. ( M .EQ. N )
|
|
*
|
|
AATMAX = -ONE
|
|
AATMIN = BIG
|
|
IF ( ROWPIV .OR. L2TRAN ) THEN
|
|
*
|
|
* Compute the row norms, needed to determine row pivoting sequence
|
|
* (in the case of heavily row weighted A, row pivoting is strongly
|
|
* advised) and to collect information needed to compare the
|
|
* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
|
|
*
|
|
IF ( L2TRAN ) THEN
|
|
DO 1950 p = 1, M
|
|
XSC = ZERO
|
|
TEMP1 = ONE
|
|
CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
|
|
* DLASSQ gets both the ell_2 and the ell_infinity norm
|
|
* in one pass through the vector
|
|
WORK(M+N+p) = XSC * SCALEM
|
|
WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1))
|
|
AATMAX = MAX( AATMAX, WORK(N+p) )
|
|
IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
|
|
1950 CONTINUE
|
|
ELSE
|
|
DO 1904 p = 1, M
|
|
WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
|
|
AATMAX = MAX( AATMAX, WORK(M+N+p) )
|
|
AATMIN = MIN( AATMIN, WORK(M+N+p) )
|
|
1904 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
* For square matrix A try to determine whether A^t would be better
|
|
* input for the preconditioned Jacobi SVD, with faster convergence.
|
|
* The decision is based on an O(N) function of the vector of column
|
|
* and row norms of A, based on the Shannon entropy. This should give
|
|
* the right choice in most cases when the difference actually matters.
|
|
* It may fail and pick the slower converging side.
|
|
*
|
|
ENTRA = ZERO
|
|
ENTRAT = ZERO
|
|
IF ( L2TRAN ) THEN
|
|
*
|
|
XSC = ZERO
|
|
TEMP1 = ONE
|
|
CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
|
|
TEMP1 = ONE / TEMP1
|
|
*
|
|
ENTRA = ZERO
|
|
DO 1113 p = 1, N
|
|
BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1
|
|
IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
|
|
1113 CONTINUE
|
|
ENTRA = - ENTRA / DLOG(DBLE(N))
|
|
*
|
|
* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
|
|
* It is derived from the diagonal of A^t * A. Do the same with the
|
|
* diagonal of A * A^t, compute the entropy of the corresponding
|
|
* probability distribution. Note that A * A^t and A^t * A have the
|
|
* same trace.
|
|
*
|
|
ENTRAT = ZERO
|
|
DO 1114 p = N+1, N+M
|
|
BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
|
|
IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
|
|
1114 CONTINUE
|
|
ENTRAT = - ENTRAT / DLOG(DBLE(M))
|
|
*
|
|
* Analyze the entropies and decide A or A^t. Smaller entropy
|
|
* usually means better input for the algorithm.
|
|
*
|
|
TRANSP = ( ENTRAT .LT. ENTRA )
|
|
*
|
|
* If A^t is better than A, transpose A.
|
|
*
|
|
IF ( TRANSP ) THEN
|
|
* In an optimal implementation, this trivial transpose
|
|
* should be replaced with faster transpose.
|
|
DO 1115 p = 1, N - 1
|
|
DO 1116 q = p + 1, N
|
|
TEMP1 = A(q,p)
|
|
A(q,p) = A(p,q)
|
|
A(p,q) = TEMP1
|
|
1116 CONTINUE
|
|
1115 CONTINUE
|
|
DO 1117 p = 1, N
|
|
WORK(M+N+p) = SVA(p)
|
|
SVA(p) = WORK(N+p)
|
|
1117 CONTINUE
|
|
TEMP1 = AAPP
|
|
AAPP = AATMAX
|
|
AATMAX = TEMP1
|
|
TEMP1 = AAQQ
|
|
AAQQ = AATMIN
|
|
AATMIN = TEMP1
|
|
KILL = LSVEC
|
|
LSVEC = RSVEC
|
|
RSVEC = KILL
|
|
IF ( LSVEC ) N1 = N
|
|
*
|
|
ROWPIV = .TRUE.
|
|
END IF
|
|
*
|
|
END IF
|
|
* END IF L2TRAN
|
|
*
|
|
* Scale the matrix so that its maximal singular value remains less
|
|
* than DSQRT(BIG) -- the matrix is scaled so that its maximal column
|
|
* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
|
|
* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
|
|
* BLAS routines that, in some implementations, are not capable of
|
|
* working in the full interval [SFMIN,BIG] and that they may provoke
|
|
* overflows in the intermediate results. If the singular values spread
|
|
* from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
|
|
* one should use DGESVJ instead of DGEJSV.
|
|
*
|
|
BIG1 = DSQRT( BIG )
|
|
TEMP1 = DSQRT( BIG / DBLE(N) )
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
|
|
IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
|
|
AAQQ = ( AAQQ / AAPP ) * TEMP1
|
|
ELSE
|
|
AAQQ = ( AAQQ * TEMP1 ) / AAPP
|
|
END IF
|
|
TEMP1 = TEMP1 * SCALEM
|
|
CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
|
|
*
|
|
* To undo scaling at the end of this procedure, multiply the
|
|
* computed singular values with USCAL2 / USCAL1.
|
|
*
|
|
USCAL1 = TEMP1
|
|
USCAL2 = AAPP
|
|
*
|
|
IF ( L2KILL ) THEN
|
|
* L2KILL enforces computation of nonzero singular values in
|
|
* the restricted range of condition number of the initial A,
|
|
* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
|
|
XSC = DSQRT( SFMIN )
|
|
ELSE
|
|
XSC = SMALL
|
|
*
|
|
* Now, if the condition number of A is too big,
|
|
* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
|
|
* as a precaution measure, the full SVD is computed using DGESVJ
|
|
* with accumulated Jacobi rotations. This provides numerically
|
|
* more robust computation, at the cost of slightly increased run
|
|
* time. Depending on the concrete implementation of BLAS and LAPACK
|
|
* (i.e. how they behave in presence of extreme ill-conditioning) the
|
|
* implementor may decide to remove this switch.
|
|
IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
|
|
JRACC = .TRUE.
|
|
END IF
|
|
*
|
|
END IF
|
|
IF ( AAQQ .LT. XSC ) THEN
|
|
DO 700 p = 1, N
|
|
IF ( SVA(p) .LT. XSC ) THEN
|
|
CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
|
|
SVA(p) = ZERO
|
|
END IF
|
|
700 CONTINUE
|
|
END IF
|
|
*
|
|
* Preconditioning using QR factorization with pivoting
|
|
*
|
|
IF ( ROWPIV ) THEN
|
|
* Optional row permutation (Bjoerck row pivoting):
|
|
* A result by Cox and Higham shows that the Bjoerck's
|
|
* row pivoting combined with standard column pivoting
|
|
* has similar effect as Powell-Reid complete pivoting.
|
|
* The ell-infinity norms of A are made nonincreasing.
|
|
DO 1952 p = 1, M - 1
|
|
q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
|
|
IWORK(2*N+p) = q
|
|
IF ( p .NE. q ) THEN
|
|
TEMP1 = WORK(M+N+p)
|
|
WORK(M+N+p) = WORK(M+N+q)
|
|
WORK(M+N+q) = TEMP1
|
|
END IF
|
|
1952 CONTINUE
|
|
CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
|
|
END IF
|
|
*
|
|
* End of the preparation phase (scaling, optional sorting and
|
|
* transposing, optional flushing of small columns).
|
|
*
|
|
* Preconditioning
|
|
*
|
|
* If the full SVD is needed, the right singular vectors are computed
|
|
* from a matrix equation, and for that we need theoretical analysis
|
|
* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
|
|
* In all other cases the first RR QRF can be chosen by other criteria
|
|
* (eg speed by replacing global with restricted window pivoting, such
|
|
* as in SGEQPX from TOMS # 782). Good results will be obtained using
|
|
* SGEQPX with properly (!) chosen numerical parameters.
|
|
* Any improvement of DGEQP3 improves overall performance of DGEJSV.
|
|
*
|
|
* A * P1 = Q1 * [ R1^t 0]^t:
|
|
DO 1963 p = 1, N
|
|
* .. all columns are free columns
|
|
IWORK(p) = 0
|
|
1963 CONTINUE
|
|
CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
|
|
*
|
|
* The upper triangular matrix R1 from the first QRF is inspected for
|
|
* rank deficiency and possibilities for deflation, or possible
|
|
* ill-conditioning. Depending on the user specified flag L2RANK,
|
|
* the procedure explores possibilities to reduce the numerical
|
|
* rank by inspecting the computed upper triangular factor. If
|
|
* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
|
|
* A + dA, where ||dA|| <= f(M,N)*EPSLN.
|
|
*
|
|
NR = 1
|
|
IF ( L2ABER ) THEN
|
|
* Standard absolute error bound suffices. All sigma_i with
|
|
* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
|
|
* aggressive enforcement of lower numerical rank by introducing a
|
|
* backward error of the order of N*EPSLN*||A||.
|
|
TEMP1 = DSQRT(DBLE(N))*EPSLN
|
|
DO 3001 p = 2, N
|
|
IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
|
|
NR = NR + 1
|
|
ELSE
|
|
GO TO 3002
|
|
END IF
|
|
3001 CONTINUE
|
|
3002 CONTINUE
|
|
ELSE IF ( L2RANK ) THEN
|
|
* .. similarly as above, only slightly more gentle (less aggressive).
|
|
* Sudden drop on the diagonal of R1 is used as the criterion for
|
|
* close-to-rank-deficient.
|
|
TEMP1 = DSQRT(SFMIN)
|
|
DO 3401 p = 2, N
|
|
IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
|
|
$ ( DABS(A(p,p)) .LT. SMALL ) .OR.
|
|
$ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
|
|
NR = NR + 1
|
|
3401 CONTINUE
|
|
3402 CONTINUE
|
|
*
|
|
ELSE
|
|
* The goal is high relative accuracy. However, if the matrix
|
|
* has high scaled condition number the relative accuracy is in
|
|
* general not feasible. Later on, a condition number estimator
|
|
* will be deployed to estimate the scaled condition number.
|
|
* Here we just remove the underflowed part of the triangular
|
|
* factor. This prevents the situation in which the code is
|
|
* working hard to get the accuracy not warranted by the data.
|
|
TEMP1 = DSQRT(SFMIN)
|
|
DO 3301 p = 2, N
|
|
IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
|
|
$ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
|
|
NR = NR + 1
|
|
3301 CONTINUE
|
|
3302 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
ALMORT = .FALSE.
|
|
IF ( NR .EQ. N ) THEN
|
|
MAXPRJ = ONE
|
|
DO 3051 p = 2, N
|
|
TEMP1 = DABS(A(p,p)) / SVA(IWORK(p))
|
|
MAXPRJ = MIN( MAXPRJ, TEMP1 )
|
|
3051 CONTINUE
|
|
IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
|
|
END IF
|
|
*
|
|
*
|
|
SCONDA = - ONE
|
|
CONDR1 = - ONE
|
|
CONDR2 = - ONE
|
|
*
|
|
IF ( ERREST ) THEN
|
|
IF ( N .EQ. NR ) THEN
|
|
IF ( RSVEC ) THEN
|
|
* .. V is available as workspace
|
|
CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
|
|
DO 3053 p = 1, N
|
|
TEMP1 = SVA(IWORK(p))
|
|
CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
|
|
3053 CONTINUE
|
|
CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
|
|
$ WORK(N+1), IWORK(2*N+M+1), IERR )
|
|
ELSE IF ( LSVEC ) THEN
|
|
* .. U is available as workspace
|
|
CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
|
|
DO 3054 p = 1, N
|
|
TEMP1 = SVA(IWORK(p))
|
|
CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
|
|
3054 CONTINUE
|
|
CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
|
|
$ WORK(N+1), IWORK(2*N+M+1), IERR )
|
|
ELSE
|
|
CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
|
|
DO 3052 p = 1, N
|
|
TEMP1 = SVA(IWORK(p))
|
|
CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
|
|
3052 CONTINUE
|
|
* .. the columns of R are scaled to have unit Euclidean lengths.
|
|
CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
|
|
$ WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
|
|
END IF
|
|
SCONDA = ONE / DSQRT(TEMP1)
|
|
* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
|
|
* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
|
|
ELSE
|
|
SCONDA = - ONE
|
|
END IF
|
|
END IF
|
|
*
|
|
L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
|
|
* If there is no violent scaling, artificial perturbation is not needed.
|
|
*
|
|
* Phase 3:
|
|
*
|
|
IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
|
|
*
|
|
* Singular Values only
|
|
*
|
|
* .. transpose A(1:NR,1:N)
|
|
DO 1946 p = 1, MIN( N-1, NR )
|
|
CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
|
|
1946 CONTINUE
|
|
*
|
|
* The following two DO-loops introduce small relative perturbation
|
|
* into the strict upper triangle of the lower triangular matrix.
|
|
* Small entries below the main diagonal are also changed.
|
|
* This modification is useful if the computing environment does not
|
|
* provide/allow FLUSH TO ZERO underflow, for it prevents many
|
|
* annoying denormalized numbers in case of strongly scaled matrices.
|
|
* The perturbation is structured so that it does not introduce any
|
|
* new perturbation of the singular values, and it does not destroy
|
|
* the job done by the preconditioner.
|
|
* The licence for this perturbation is in the variable L2PERT, which
|
|
* should be .FALSE. if FLUSH TO ZERO underflow is active.
|
|
*
|
|
IF ( .NOT. ALMORT ) THEN
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
* XSC = DSQRT(SMALL)
|
|
XSC = EPSLN / DBLE(N)
|
|
DO 4947 q = 1, NR
|
|
TEMP1 = XSC*DABS(A(q,q))
|
|
DO 4949 p = 1, N
|
|
IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
|
|
$ .OR. ( p .LT. q ) )
|
|
$ A(p,q) = DSIGN( TEMP1, A(p,q) )
|
|
4949 CONTINUE
|
|
4947 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
|
|
END IF
|
|
*
|
|
* .. second preconditioning using the QR factorization
|
|
*
|
|
CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
|
|
*
|
|
* .. and transpose upper to lower triangular
|
|
DO 1948 p = 1, NR - 1
|
|
CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
|
|
1948 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
* Row-cyclic Jacobi SVD algorithm with column pivoting
|
|
*
|
|
* .. again some perturbation (a "background noise") is added
|
|
* to drown denormals
|
|
IF ( L2PERT ) THEN
|
|
* XSC = DSQRT(SMALL)
|
|
XSC = EPSLN / DBLE(N)
|
|
DO 1947 q = 1, NR
|
|
TEMP1 = XSC*DABS(A(q,q))
|
|
DO 1949 p = 1, NR
|
|
IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
|
|
$ .OR. ( p .LT. q ) )
|
|
$ A(p,q) = DSIGN( TEMP1, A(p,q) )
|
|
1949 CONTINUE
|
|
1947 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
|
|
END IF
|
|
*
|
|
* .. and one-sided Jacobi rotations are started on a lower
|
|
* triangular matrix (plus perturbation which is ignored in
|
|
* the part which destroys triangular form (confusing?!))
|
|
*
|
|
CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
|
|
$ N, V, LDV, WORK, LWORK, INFO )
|
|
*
|
|
SCALEM = WORK(1)
|
|
NUMRANK = IDNINT(WORK(2))
|
|
*
|
|
*
|
|
ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
|
|
*
|
|
* -> Singular Values and Right Singular Vectors <-
|
|
*
|
|
IF ( ALMORT ) THEN
|
|
*
|
|
* .. in this case NR equals N
|
|
DO 1998 p = 1, NR
|
|
CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
|
|
1998 CONTINUE
|
|
CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
|
|
*
|
|
CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
|
|
$ WORK, LWORK, INFO )
|
|
SCALEM = WORK(1)
|
|
NUMRANK = IDNINT(WORK(2))
|
|
|
|
ELSE
|
|
*
|
|
* .. two more QR factorizations ( one QRF is not enough, two require
|
|
* accumulated product of Jacobi rotations, three are perfect )
|
|
*
|
|
CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
|
|
CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
|
|
CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
|
|
CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
|
|
CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
|
|
$ LWORK-2*N, IERR )
|
|
DO 8998 p = 1, NR
|
|
CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
|
|
8998 CONTINUE
|
|
CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
|
|
*
|
|
CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
|
|
$ LDU, WORK(N+1), LWORK, INFO )
|
|
SCALEM = WORK(N+1)
|
|
NUMRANK = IDNINT(WORK(N+2))
|
|
IF ( NR .LT. N ) THEN
|
|
CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV )
|
|
CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV )
|
|
CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
|
|
END IF
|
|
*
|
|
CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
|
|
$ V, LDV, WORK(N+1), LWORK-N, IERR )
|
|
*
|
|
END IF
|
|
*
|
|
DO 8991 p = 1, N
|
|
CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
|
|
8991 CONTINUE
|
|
CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
|
|
*
|
|
IF ( TRANSP ) THEN
|
|
CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
|
|
END IF
|
|
*
|
|
ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
|
|
*
|
|
* .. Singular Values and Left Singular Vectors ..
|
|
*
|
|
* .. second preconditioning step to avoid need to accumulate
|
|
* Jacobi rotations in the Jacobi iterations.
|
|
DO 1965 p = 1, NR
|
|
CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
|
|
1965 CONTINUE
|
|
CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
|
|
*
|
|
CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
|
|
$ LWORK-2*N, IERR )
|
|
*
|
|
DO 1967 p = 1, NR - 1
|
|
CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
|
|
1967 CONTINUE
|
|
CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
|
|
*
|
|
CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
|
|
$ LDA, WORK(N+1), LWORK-N, INFO )
|
|
SCALEM = WORK(N+1)
|
|
NUMRANK = IDNINT(WORK(N+2))
|
|
*
|
|
IF ( NR .LT. M ) THEN
|
|
CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
|
|
IF ( NR .LT. N1 ) THEN
|
|
CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
|
|
CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
|
|
END IF
|
|
END IF
|
|
*
|
|
CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
|
|
$ LDU, WORK(N+1), LWORK-N, IERR )
|
|
*
|
|
IF ( ROWPIV )
|
|
$ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
|
|
*
|
|
DO 1974 p = 1, N1
|
|
XSC = ONE / DNRM2( M, U(1,p), 1 )
|
|
CALL DSCAL( M, XSC, U(1,p), 1 )
|
|
1974 CONTINUE
|
|
*
|
|
IF ( TRANSP ) THEN
|
|
CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* .. Full SVD ..
|
|
*
|
|
IF ( .NOT. JRACC ) THEN
|
|
*
|
|
IF ( .NOT. ALMORT ) THEN
|
|
*
|
|
* Second Preconditioning Step (QRF [with pivoting])
|
|
* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
|
|
* equivalent to an LQF CALL. Since in many libraries the QRF
|
|
* seems to be better optimized than the LQF, we do explicit
|
|
* transpose and use the QRF. This is subject to changes in an
|
|
* optimized implementation of DGEJSV.
|
|
*
|
|
DO 1968 p = 1, NR
|
|
CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
|
|
1968 CONTINUE
|
|
*
|
|
* .. the following two loops perturb small entries to avoid
|
|
* denormals in the second QR factorization, where they are
|
|
* as good as zeros. This is done to avoid painfully slow
|
|
* computation with denormals. The relative size of the perturbation
|
|
* is a parameter that can be changed by the implementer.
|
|
* This perturbation device will be obsolete on machines with
|
|
* properly implemented arithmetic.
|
|
* To switch it off, set L2PERT=.FALSE. To remove it from the
|
|
* code, remove the action under L2PERT=.TRUE., leave the ELSE part.
|
|
* The following two loops should be blocked and fused with the
|
|
* transposed copy above.
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)
|
|
DO 2969 q = 1, NR
|
|
TEMP1 = XSC*DABS( V(q,q) )
|
|
DO 2968 p = 1, N
|
|
IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
|
|
$ .OR. ( p .LT. q ) )
|
|
$ V(p,q) = DSIGN( TEMP1, V(p,q) )
|
|
IF ( p .LT. q ) V(p,q) = - V(p,q)
|
|
2968 CONTINUE
|
|
2969 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
|
|
END IF
|
|
*
|
|
* Estimate the row scaled condition number of R1
|
|
* (If R1 is rectangular, N > NR, then the condition number
|
|
* of the leading NR x NR submatrix is estimated.)
|
|
*
|
|
CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
|
|
DO 3950 p = 1, NR
|
|
TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
|
|
CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
|
|
3950 CONTINUE
|
|
CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
|
|
$ WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
|
|
CONDR1 = ONE / DSQRT(TEMP1)
|
|
* .. here need a second opinion on the condition number
|
|
* .. then assume worst case scenario
|
|
* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
|
|
* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N))
|
|
*
|
|
COND_OK = DSQRT(DBLE(NR))
|
|
*[TP] COND_OK is a tuning parameter.
|
|
|
|
IF ( CONDR1 .LT. COND_OK ) THEN
|
|
* .. the second QRF without pivoting. Note: in an optimized
|
|
* implementation, this QRF should be implemented as the QRF
|
|
* of a lower triangular matrix.
|
|
* R1^t = Q2 * R2
|
|
CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
|
|
$ LWORK-2*N, IERR )
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)/EPSLN
|
|
DO 3959 p = 2, NR
|
|
DO 3958 q = 1, p - 1
|
|
TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
|
|
IF ( DABS(V(q,p)) .LE. TEMP1 )
|
|
$ V(q,p) = DSIGN( TEMP1, V(q,p) )
|
|
3958 CONTINUE
|
|
3959 CONTINUE
|
|
END IF
|
|
*
|
|
IF ( NR .NE. N )
|
|
$ CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
|
|
* .. save ...
|
|
*
|
|
* .. this transposed copy should be better than naive
|
|
DO 1969 p = 1, NR - 1
|
|
CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
|
|
1969 CONTINUE
|
|
*
|
|
CONDR2 = CONDR1
|
|
*
|
|
ELSE
|
|
*
|
|
* .. ill-conditioned case: second QRF with pivoting
|
|
* Note that windowed pivoting would be equally good
|
|
* numerically, and more run-time efficient. So, in
|
|
* an optimal implementation, the next call to DGEQP3
|
|
* should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
|
|
* with properly (carefully) chosen parameters.
|
|
*
|
|
* R1^t * P2 = Q2 * R2
|
|
DO 3003 p = 1, NR
|
|
IWORK(N+p) = 0
|
|
3003 CONTINUE
|
|
CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
|
|
$ WORK(2*N+1), LWORK-2*N, IERR )
|
|
** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
|
|
** $ LWORK-2*N, IERR )
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)
|
|
DO 3969 p = 2, NR
|
|
DO 3968 q = 1, p - 1
|
|
TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
|
|
IF ( DABS(V(q,p)) .LE. TEMP1 )
|
|
$ V(q,p) = DSIGN( TEMP1, V(q,p) )
|
|
3968 CONTINUE
|
|
3969 CONTINUE
|
|
END IF
|
|
*
|
|
CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)
|
|
DO 8970 p = 2, NR
|
|
DO 8971 q = 1, p - 1
|
|
TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
|
|
V(p,q) = - DSIGN( TEMP1, V(q,p) )
|
|
8971 CONTINUE
|
|
8970 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
|
|
END IF
|
|
* Now, compute R2 = L3 * Q3, the LQ factorization.
|
|
CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
|
|
$ WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
|
|
* .. and estimate the condition number
|
|
CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
|
|
DO 4950 p = 1, NR
|
|
TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
|
|
CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
|
|
4950 CONTINUE
|
|
CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
|
|
$ WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
|
|
CONDR2 = ONE / DSQRT(TEMP1)
|
|
*
|
|
IF ( CONDR2 .GE. COND_OK ) THEN
|
|
* .. save the Householder vectors used for Q3
|
|
* (this overwrites the copy of R2, as it will not be
|
|
* needed in this branch, but it does not overwrite the
|
|
* Huseholder vectors of Q2.).
|
|
CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
|
|
* .. and the rest of the information on Q3 is in
|
|
* WORK(2*N+N*NR+1:2*N+N*NR+N)
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)
|
|
DO 4968 q = 2, NR
|
|
TEMP1 = XSC * V(q,q)
|
|
DO 4969 p = 1, q - 1
|
|
* V(p,q) = - DSIGN( TEMP1, V(q,p) )
|
|
V(p,q) = - DSIGN( TEMP1, V(p,q) )
|
|
4969 CONTINUE
|
|
4968 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
|
|
END IF
|
|
*
|
|
* Second preconditioning finished; continue with Jacobi SVD
|
|
* The input matrix is lower triangular.
|
|
*
|
|
* Recover the right singular vectors as solution of a well
|
|
* conditioned triangular matrix equation.
|
|
*
|
|
IF ( CONDR1 .LT. COND_OK ) THEN
|
|
*
|
|
CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
|
|
$ LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
|
|
SCALEM = WORK(2*N+N*NR+NR+1)
|
|
NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
|
|
DO 3970 p = 1, NR
|
|
CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
|
|
CALL DSCAL( NR, SVA(p), V(1,p), 1 )
|
|
3970 CONTINUE
|
|
|
|
* .. pick the right matrix equation and solve it
|
|
*
|
|
IF ( NR .EQ. N ) THEN
|
|
* :)) .. best case, R1 is inverted. The solution of this matrix
|
|
* equation is Q2*V2 = the product of the Jacobi rotations
|
|
* used in DGESVJ, premultiplied with the orthogonal matrix
|
|
* from the second QR factorization.
|
|
CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
|
|
ELSE
|
|
* .. R1 is well conditioned, but non-square. Transpose(R2)
|
|
* is inverted to get the product of the Jacobi rotations
|
|
* used in DGESVJ. The Q-factor from the second QR
|
|
* factorization is then built in explicitly.
|
|
CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
|
|
$ N,V,LDV)
|
|
IF ( NR .LT. N ) THEN
|
|
CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
|
|
CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
|
|
CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
|
|
END IF
|
|
CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
|
|
$ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
|
|
END IF
|
|
*
|
|
ELSE IF ( CONDR2 .LT. COND_OK ) THEN
|
|
*
|
|
* :) .. the input matrix A is very likely a relative of
|
|
* the Kahan matrix :)
|
|
* The matrix R2 is inverted. The solution of the matrix equation
|
|
* is Q3^T*V3 = the product of the Jacobi rotations (applied to
|
|
* the lower triangular L3 from the LQ factorization of
|
|
* R2=L3*Q3), pre-multiplied with the transposed Q3.
|
|
CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
|
|
$ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
|
|
SCALEM = WORK(2*N+N*NR+NR+1)
|
|
NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
|
|
DO 3870 p = 1, NR
|
|
CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
|
|
CALL DSCAL( NR, SVA(p), U(1,p), 1 )
|
|
3870 CONTINUE
|
|
CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
|
|
* .. apply the permutation from the second QR factorization
|
|
DO 873 q = 1, NR
|
|
DO 872 p = 1, NR
|
|
WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
|
|
872 CONTINUE
|
|
DO 874 p = 1, NR
|
|
U(p,q) = WORK(2*N+N*NR+NR+p)
|
|
874 CONTINUE
|
|
873 CONTINUE
|
|
IF ( NR .LT. N ) THEN
|
|
CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
|
|
CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
|
|
CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
|
|
END IF
|
|
CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
|
|
$ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
|
|
ELSE
|
|
* Last line of defense.
|
|
* #:( This is a rather pathological case: no scaled condition
|
|
* improvement after two pivoted QR factorizations. Other
|
|
* possibility is that the rank revealing QR factorization
|
|
* or the condition estimator has failed, or the COND_OK
|
|
* is set very close to ONE (which is unnecessary). Normally,
|
|
* this branch should never be executed, but in rare cases of
|
|
* failure of the RRQR or condition estimator, the last line of
|
|
* defense ensures that DGEJSV completes the task.
|
|
* Compute the full SVD of L3 using DGESVJ with explicit
|
|
* accumulation of Jacobi rotations.
|
|
CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
|
|
$ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
|
|
SCALEM = WORK(2*N+N*NR+NR+1)
|
|
NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
|
|
IF ( NR .LT. N ) THEN
|
|
CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
|
|
CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
|
|
CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
|
|
END IF
|
|
CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
|
|
$ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
|
|
*
|
|
CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
|
|
$ WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
|
|
$ LWORK-2*N-N*NR-NR, IERR )
|
|
DO 773 q = 1, NR
|
|
DO 772 p = 1, NR
|
|
WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
|
|
772 CONTINUE
|
|
DO 774 p = 1, NR
|
|
U(p,q) = WORK(2*N+N*NR+NR+p)
|
|
774 CONTINUE
|
|
773 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
* Permute the rows of V using the (column) permutation from the
|
|
* first QRF. Also, scale the columns to make them unit in
|
|
* Euclidean norm. This applies to all cases.
|
|
*
|
|
TEMP1 = DSQRT(DBLE(N)) * EPSLN
|
|
DO 1972 q = 1, N
|
|
DO 972 p = 1, N
|
|
WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
|
|
972 CONTINUE
|
|
DO 973 p = 1, N
|
|
V(p,q) = WORK(2*N+N*NR+NR+p)
|
|
973 CONTINUE
|
|
XSC = ONE / DNRM2( N, V(1,q), 1 )
|
|
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
|
|
$ CALL DSCAL( N, XSC, V(1,q), 1 )
|
|
1972 CONTINUE
|
|
* At this moment, V contains the right singular vectors of A.
|
|
* Next, assemble the left singular vector matrix U (M x N).
|
|
IF ( NR .LT. M ) THEN
|
|
CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
|
|
IF ( NR .LT. N1 ) THEN
|
|
CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
|
|
CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
|
|
END IF
|
|
END IF
|
|
*
|
|
* The Q matrix from the first QRF is built into the left singular
|
|
* matrix U. This applies to all cases.
|
|
*
|
|
CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
|
|
$ LDU, WORK(N+1), LWORK-N, IERR )
|
|
|
|
* The columns of U are normalized. The cost is O(M*N) flops.
|
|
TEMP1 = DSQRT(DBLE(M)) * EPSLN
|
|
DO 1973 p = 1, NR
|
|
XSC = ONE / DNRM2( M, U(1,p), 1 )
|
|
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
|
|
$ CALL DSCAL( M, XSC, U(1,p), 1 )
|
|
1973 CONTINUE
|
|
*
|
|
* If the initial QRF is computed with row pivoting, the left
|
|
* singular vectors must be adjusted.
|
|
*
|
|
IF ( ROWPIV )
|
|
$ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
|
|
*
|
|
ELSE
|
|
*
|
|
* .. the initial matrix A has almost orthogonal columns and
|
|
* the second QRF is not needed
|
|
*
|
|
CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL)
|
|
DO 5970 p = 2, N
|
|
TEMP1 = XSC * WORK( N + (p-1)*N + p )
|
|
DO 5971 q = 1, p - 1
|
|
WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
|
|
5971 CONTINUE
|
|
5970 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
|
|
END IF
|
|
*
|
|
CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
|
|
$ N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
|
|
*
|
|
SCALEM = WORK(N+N*N+1)
|
|
NUMRANK = IDNINT(WORK(N+N*N+2))
|
|
DO 6970 p = 1, N
|
|
CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
|
|
CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
|
|
6970 CONTINUE
|
|
*
|
|
CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
|
|
$ ONE, A, LDA, WORK(N+1), N )
|
|
DO 6972 p = 1, N
|
|
CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
|
|
6972 CONTINUE
|
|
TEMP1 = DSQRT(DBLE(N))*EPSLN
|
|
DO 6971 p = 1, N
|
|
XSC = ONE / DNRM2( N, V(1,p), 1 )
|
|
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
|
|
$ CALL DSCAL( N, XSC, V(1,p), 1 )
|
|
6971 CONTINUE
|
|
*
|
|
* Assemble the left singular vector matrix U (M x N).
|
|
*
|
|
IF ( N .LT. M ) THEN
|
|
CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU )
|
|
IF ( N .LT. N1 ) THEN
|
|
CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU )
|
|
CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
|
|
END IF
|
|
END IF
|
|
CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
|
|
$ LDU, WORK(N+1), LWORK-N, IERR )
|
|
TEMP1 = DSQRT(DBLE(M))*EPSLN
|
|
DO 6973 p = 1, N1
|
|
XSC = ONE / DNRM2( M, U(1,p), 1 )
|
|
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
|
|
$ CALL DSCAL( M, XSC, U(1,p), 1 )
|
|
6973 CONTINUE
|
|
*
|
|
IF ( ROWPIV )
|
|
$ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
|
|
*
|
|
END IF
|
|
*
|
|
* end of the >> almost orthogonal case << in the full SVD
|
|
*
|
|
ELSE
|
|
*
|
|
* This branch deploys a preconditioned Jacobi SVD with explicitly
|
|
* accumulated rotations. It is included as optional, mainly for
|
|
* experimental purposes. It does perform well, and can also be used.
|
|
* In this implementation, this branch will be automatically activated
|
|
* if the condition number sigma_max(A) / sigma_min(A) is predicted
|
|
* to be greater than the overflow threshold. This is because the
|
|
* a posteriori computation of the singular vectors assumes robust
|
|
* implementation of BLAS and some LAPACK procedures, capable of working
|
|
* in presence of extreme values. Since that is not always the case, ...
|
|
*
|
|
DO 7968 p = 1, NR
|
|
CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
|
|
7968 CONTINUE
|
|
*
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL/EPSLN)
|
|
DO 5969 q = 1, NR
|
|
TEMP1 = XSC*DABS( V(q,q) )
|
|
DO 5968 p = 1, N
|
|
IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
|
|
$ .OR. ( p .LT. q ) )
|
|
$ V(p,q) = DSIGN( TEMP1, V(p,q) )
|
|
IF ( p .LT. q ) V(p,q) = - V(p,q)
|
|
5968 CONTINUE
|
|
5969 CONTINUE
|
|
ELSE
|
|
CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
|
|
END IF
|
|
|
|
CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
|
|
$ LWORK-2*N, IERR )
|
|
CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
|
|
*
|
|
DO 7969 p = 1, NR
|
|
CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
|
|
7969 CONTINUE
|
|
|
|
IF ( L2PERT ) THEN
|
|
XSC = DSQRT(SMALL/EPSLN)
|
|
DO 9970 q = 2, NR
|
|
DO 9971 p = 1, q - 1
|
|
TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
|
|
U(p,q) = - DSIGN( TEMP1, U(q,p) )
|
|
9971 CONTINUE
|
|
9970 CONTINUE
|
|
ELSE
|
|
CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
|
|
END IF
|
|
|
|
CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
|
|
$ N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
|
|
SCALEM = WORK(2*N+N*NR+1)
|
|
NUMRANK = IDNINT(WORK(2*N+N*NR+2))
|
|
|
|
IF ( NR .LT. N ) THEN
|
|
CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
|
|
CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
|
|
CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
|
|
END IF
|
|
|
|
CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
|
|
$ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
|
|
*
|
|
* Permute the rows of V using the (column) permutation from the
|
|
* first QRF. Also, scale the columns to make them unit in
|
|
* Euclidean norm. This applies to all cases.
|
|
*
|
|
TEMP1 = DSQRT(DBLE(N)) * EPSLN
|
|
DO 7972 q = 1, N
|
|
DO 8972 p = 1, N
|
|
WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
|
|
8972 CONTINUE
|
|
DO 8973 p = 1, N
|
|
V(p,q) = WORK(2*N+N*NR+NR+p)
|
|
8973 CONTINUE
|
|
XSC = ONE / DNRM2( N, V(1,q), 1 )
|
|
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
|
|
$ CALL DSCAL( N, XSC, V(1,q), 1 )
|
|
7972 CONTINUE
|
|
*
|
|
* At this moment, V contains the right singular vectors of A.
|
|
* Next, assemble the left singular vector matrix U (M x N).
|
|
*
|
|
IF ( NR .LT. M ) THEN
|
|
CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
|
|
IF ( NR .LT. N1 ) THEN
|
|
CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU )
|
|
CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
|
|
END IF
|
|
END IF
|
|
*
|
|
CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
|
|
$ LDU, WORK(N+1), LWORK-N, IERR )
|
|
*
|
|
IF ( ROWPIV )
|
|
$ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
|
|
*
|
|
*
|
|
END IF
|
|
IF ( TRANSP ) THEN
|
|
* .. swap U and V because the procedure worked on A^t
|
|
DO 6974 p = 1, N
|
|
CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
|
|
6974 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
* end of the full SVD
|
|
*
|
|
* Undo scaling, if necessary (and possible)
|
|
*
|
|
IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
|
|
USCAL1 = ONE
|
|
USCAL2 = ONE
|
|
END IF
|
|
*
|
|
IF ( NR .LT. N ) THEN
|
|
DO 3004 p = NR+1, N
|
|
SVA(p) = ZERO
|
|
3004 CONTINUE
|
|
END IF
|
|
*
|
|
WORK(1) = USCAL2 * SCALEM
|
|
WORK(2) = USCAL1
|
|
IF ( ERREST ) WORK(3) = SCONDA
|
|
IF ( LSVEC .AND. RSVEC ) THEN
|
|
WORK(4) = CONDR1
|
|
WORK(5) = CONDR2
|
|
END IF
|
|
IF ( L2TRAN ) THEN
|
|
WORK(6) = ENTRA
|
|
WORK(7) = ENTRAT
|
|
END IF
|
|
*
|
|
IWORK(1) = NR
|
|
IWORK(2) = NUMRANK
|
|
IWORK(3) = WARNING
|
|
*
|
|
RETURN
|
|
* ..
|
|
* .. END OF DGEJSV
|
|
* ..
|
|
END
|
|
*
|
|
|