You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
530 lines
16 KiB
530 lines
16 KiB
*> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGELST + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelst.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelst.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelst.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANS
|
|
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGELST solves overdetermined or underdetermined real linear systems
|
|
*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
|
|
*> factorization of A with compact WY representation of Q.
|
|
*> It is assumed that A has full rank.
|
|
*>
|
|
*> The following options are provided:
|
|
*>
|
|
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
|
|
*> an overdetermined system, i.e., solve the least squares problem
|
|
*> minimize || B - A*X ||.
|
|
*>
|
|
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
|
|
*> an underdetermined system A * X = B.
|
|
*>
|
|
*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
|
|
*> an underdetermined system A**T * X = B.
|
|
*>
|
|
*> 4. If TRANS = 'T' and m < n: find the least squares solution of
|
|
*> an overdetermined system, i.e., solve the least squares problem
|
|
*> minimize || B - A**T * X ||.
|
|
*>
|
|
*> Several right hand side vectors b and solution vectors x can be
|
|
*> handled in a single call; they are stored as the columns of the
|
|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
|
|
*> matrix X.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': the linear system involves A;
|
|
*> = 'T': the linear system involves A**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of
|
|
*> columns of the matrices B and X. NRHS >=0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit,
|
|
*> if M >= N, A is overwritten by details of its QR
|
|
*> factorization as returned by DGEQRT;
|
|
*> if M < N, A is overwritten by details of its LQ
|
|
*> factorization as returned by DGELQT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On entry, the matrix B of right hand side vectors, stored
|
|
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
|
|
*> if TRANS = 'T'.
|
|
*> On exit, if INFO = 0, B is overwritten by the solution
|
|
*> vectors, stored columnwise:
|
|
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
|
|
*> squares solution vectors; the residual sum of squares for the
|
|
*> solution in each column is given by the sum of squares of
|
|
*> elements N+1 to M in that column;
|
|
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
|
|
*> minimum norm solution vectors;
|
|
*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
|
|
*> minimum norm solution vectors;
|
|
*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
|
|
*> least squares solution vectors; the residual sum of squares
|
|
*> for the solution in each column is given by the sum of
|
|
*> squares of elements M+1 to N in that column.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
|
|
*> For optimal performance,
|
|
*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
|
|
*> where MN = min(M,N) and NB is the optimum block size.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the i-th diagonal element of the
|
|
*> triangular factor of A is zero, so that A does not have
|
|
*> full rank; the least squares solution could not be
|
|
*> computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleGEsolve
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> November 2022, Igor Kozachenko,
|
|
*> Computer Science Division,
|
|
*> University of California, Berkeley
|
|
*> \endverbatim
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANS
|
|
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, TPSD
|
|
INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
|
|
$ NB, NBMIN, SCLLEN
|
|
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
DOUBLE PRECISION RWORK( 1 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, DLANGE
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLASCL,
|
|
$ DLASET, DTRTRS, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments.
|
|
*
|
|
INFO = 0
|
|
MN = MIN( M, N )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
|
|
$ THEN
|
|
INFO = -10
|
|
END IF
|
|
*
|
|
* Figure out optimal block size and optimal workspace size
|
|
*
|
|
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
|
|
*
|
|
TPSD = .TRUE.
|
|
IF( LSAME( TRANS, 'N' ) )
|
|
$ TPSD = .FALSE.
|
|
*
|
|
NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
|
|
*
|
|
MNNRHS = MAX( MN, NRHS )
|
|
LWOPT = MAX( 1, (MN+MNNRHS)*NB )
|
|
WORK( 1 ) = DBLE( LWOPT )
|
|
*
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGELST ', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
|
|
CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
|
|
WORK( 1 ) = DBLE( LWOPT )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
|
|
*
|
|
IF( NB.GT.MN ) NB = MN
|
|
*
|
|
* Determine the block size from the supplied LWORK
|
|
* ( at this stage we know that LWORK >= (minimum required workspace,
|
|
* but it may be less than optimal)
|
|
*
|
|
NB = MIN( NB, LWORK/( MN + MNNRHS ) )
|
|
*
|
|
* The minimum value of NB, when blocked code is used
|
|
*
|
|
NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
|
|
*
|
|
IF( NB.LT.NBMIN ) THEN
|
|
NB = 1
|
|
END IF
|
|
*
|
|
* Get machine parameters
|
|
*
|
|
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
|
|
IASCL = 0
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
*
|
|
* Scale matrix norm up to SMLNUM
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
|
|
IASCL = 1
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
*
|
|
* Scale matrix norm down to BIGNUM
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
|
|
IASCL = 2
|
|
ELSE IF( ANRM.EQ.ZERO ) THEN
|
|
*
|
|
* Matrix all zero. Return zero solution.
|
|
*
|
|
CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
|
|
WORK( 1 ) = DBLE( LWOPT )
|
|
RETURN
|
|
END IF
|
|
*
|
|
BROW = M
|
|
IF( TPSD )
|
|
$ BROW = N
|
|
BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
|
|
IBSCL = 0
|
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
|
*
|
|
* Scale matrix norm up to SMLNUM
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
|
|
$ INFO )
|
|
IBSCL = 1
|
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
|
*
|
|
* Scale matrix norm down to BIGNUM
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
|
|
$ INFO )
|
|
IBSCL = 2
|
|
END IF
|
|
*
|
|
IF( M.GE.N ) THEN
|
|
*
|
|
* M > N:
|
|
* Compute the blocked QR factorization of A,
|
|
* using the compact WY representation of Q,
|
|
* workspace at least N, optimally N*NB.
|
|
*
|
|
CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
|
|
$ WORK( MN*NB+1 ), INFO )
|
|
*
|
|
IF( .NOT.TPSD ) THEN
|
|
*
|
|
* M > N, A is not transposed:
|
|
* Overdetermined system of equations,
|
|
* least-squares problem, min || A * X - B ||.
|
|
*
|
|
* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
|
|
* using the compact WY representation of Q,
|
|
* workspace at least NRHS, optimally NRHS*NB.
|
|
*
|
|
CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
|
|
$ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
|
|
$ INFO )
|
|
*
|
|
* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
|
|
*
|
|
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
|
|
$ A, LDA, B, LDB, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
SCLLEN = N
|
|
*
|
|
ELSE
|
|
*
|
|
* M > N, A is transposed:
|
|
* Underdetermined system of equations,
|
|
* minimum norm solution of A**T * X = B.
|
|
*
|
|
* Compute B := inv(R**T) * B in two row blocks of B.
|
|
*
|
|
* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
|
|
*
|
|
CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
|
|
$ A, LDA, B, LDB, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Block 2: Zero out all rows below the N-th row in B:
|
|
* B(N+1:M,1:NRHS) = ZERO
|
|
*
|
|
DO J = 1, NRHS
|
|
DO I = N + 1, M
|
|
B( I, J ) = ZERO
|
|
END DO
|
|
END DO
|
|
*
|
|
* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
|
|
* using the compact WY representation of Q,
|
|
* workspace at least NRHS, optimally NRHS*NB.
|
|
*
|
|
CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
|
|
$ A, LDA, WORK( 1 ), NB, B, LDB,
|
|
$ WORK( MN*NB+1 ), INFO )
|
|
*
|
|
SCLLEN = M
|
|
*
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* M < N:
|
|
* Compute the blocked LQ factorization of A,
|
|
* using the compact WY representation of Q,
|
|
* workspace at least M, optimally M*NB.
|
|
*
|
|
CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
|
|
$ WORK( MN*NB+1 ), INFO )
|
|
*
|
|
IF( .NOT.TPSD ) THEN
|
|
*
|
|
* M < N, A is not transposed:
|
|
* Underdetermined system of equations,
|
|
* minimum norm solution of A * X = B.
|
|
*
|
|
* Compute B := inv(L) * B in two row blocks of B.
|
|
*
|
|
* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
|
|
*
|
|
CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
|
|
$ A, LDA, B, LDB, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Block 2: Zero out all rows below the M-th row in B:
|
|
* B(M+1:N,1:NRHS) = ZERO
|
|
*
|
|
DO J = 1, NRHS
|
|
DO I = M + 1, N
|
|
B( I, J ) = ZERO
|
|
END DO
|
|
END DO
|
|
*
|
|
* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
|
|
* using the compact WY representation of Q,
|
|
* workspace at least NRHS, optimally NRHS*NB.
|
|
*
|
|
CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
|
|
$ WORK( 1 ), NB, B, LDB,
|
|
$ WORK( MN*NB+1 ), INFO )
|
|
*
|
|
SCLLEN = N
|
|
*
|
|
ELSE
|
|
*
|
|
* M < N, A is transposed:
|
|
* Overdetermined system of equations,
|
|
* least-squares problem, min || A**T * X - B ||.
|
|
*
|
|
* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
|
|
* using the compact WY representation of Q,
|
|
* workspace at least NRHS, optimally NRHS*NB.
|
|
*
|
|
CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
|
|
$ A, LDA, WORK( 1 ), NB, B, LDB,
|
|
$ WORK( MN*NB+1), INFO )
|
|
*
|
|
* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
|
|
*
|
|
CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
|
|
$ A, LDA, B, LDB, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
SCLLEN = M
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
* Undo scaling
|
|
*
|
|
IF( IASCL.EQ.1 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
|
|
$ INFO )
|
|
ELSE IF( IASCL.EQ.2 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
|
|
$ INFO )
|
|
END IF
|
|
IF( IBSCL.EQ.1 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
|
|
$ INFO )
|
|
ELSE IF( IBSCL.EQ.2 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
|
|
$ INFO )
|
|
END IF
|
|
*
|
|
WORK( 1 ) = DBLE( LWOPT )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DGELST
|
|
*
|
|
END
|
|
|