You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
10 KiB
352 lines
10 KiB
*> \brief \b DGGGLM
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGGGLM + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggglm.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggglm.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggglm.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
|
|
* $ X( * ), Y( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
|
|
*>
|
|
*> minimize || y ||_2 subject to d = A*x + B*y
|
|
*> x
|
|
*>
|
|
*> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
|
|
*> given N-vector. It is assumed that M <= N <= M+P, and
|
|
*>
|
|
*> rank(A) = M and rank( A B ) = N.
|
|
*>
|
|
*> Under these assumptions, the constrained equation is always
|
|
*> consistent, and there is a unique solution x and a minimal 2-norm
|
|
*> solution y, which is obtained using a generalized QR factorization
|
|
*> of the matrices (A, B) given by
|
|
*>
|
|
*> A = Q*(R), B = Q*T*Z.
|
|
*> (0)
|
|
*>
|
|
*> In particular, if matrix B is square nonsingular, then the problem
|
|
*> GLM is equivalent to the following weighted linear least squares
|
|
*> problem
|
|
*>
|
|
*> minimize || inv(B)*(d-A*x) ||_2
|
|
*> x
|
|
*>
|
|
*> where inv(B) denotes the inverse of B.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of columns of the matrix A. 0 <= M <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of columns of the matrix B. P >= N-M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,M)
|
|
*> On entry, the N-by-M matrix A.
|
|
*> On exit, the upper triangular part of the array A contains
|
|
*> the M-by-M upper triangular matrix R.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,P)
|
|
*> On entry, the N-by-P matrix B.
|
|
*> On exit, if N <= P, the upper triangle of the subarray
|
|
*> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
|
|
*> if N > P, the elements on and above the (N-P)th subdiagonal
|
|
*> contain the N-by-P upper trapezoidal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, D is the left hand side of the GLM equation.
|
|
*> On exit, D is destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension (M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Y
|
|
*> \verbatim
|
|
*> Y is DOUBLE PRECISION array, dimension (P)
|
|
*>
|
|
*> On exit, X and Y are the solutions of the GLM problem.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,N+M+P).
|
|
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
|
|
*> where NB is an upper bound for the optimal blocksizes for
|
|
*> DGEQRF, SGERQF, DORMQR and SORMRQ.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> = 1: the upper triangular factor R associated with A in the
|
|
*> generalized QR factorization of the pair (A, B) is
|
|
*> singular, so that rank(A) < M; the least squares
|
|
*> solution could not be computed.
|
|
*> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
|
|
*> factor T associated with B in the generalized QR
|
|
*> factorization of the pair (A, B) is singular, so that
|
|
*> rank( A B ) < N; the least squares solution could not
|
|
*> be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHEReigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
|
|
$ X( * ), Y( * )
|
|
* ..
|
|
*
|
|
* ===================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
|
|
$ NB4, NP
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
|
|
$ XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC INT, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
NP = MIN( N, P )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
|
|
INFO = -2
|
|
ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
*
|
|
* Calculate workspace
|
|
*
|
|
IF( INFO.EQ.0) THEN
|
|
IF( N.EQ.0 ) THEN
|
|
LWKMIN = 1
|
|
LWKOPT = 1
|
|
ELSE
|
|
NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
|
|
NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
|
|
NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
|
|
NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
|
|
NB = MAX( NB1, NB2, NB3, NB4 )
|
|
LWKMIN = M + N + P
|
|
LWKOPT = M + NP + MAX( N, P )*NB
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
*
|
|
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -12
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGGGLM', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
DO I = 1, M
|
|
X(I) = ZERO
|
|
END DO
|
|
DO I = 1, P
|
|
Y(I) = ZERO
|
|
END DO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute the GQR factorization of matrices A and B:
|
|
*
|
|
* Q**T*A = ( R11 ) M, Q**T*B*Z**T = ( T11 T12 ) M
|
|
* ( 0 ) N-M ( 0 T22 ) N-M
|
|
* M M+P-N N-M
|
|
*
|
|
* where R11 and T22 are upper triangular, and Q and Z are
|
|
* orthogonal.
|
|
*
|
|
CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
|
|
$ WORK( M+NP+1 ), LWORK-M-NP, INFO )
|
|
LOPT = INT( WORK( M+NP+1 ) )
|
|
*
|
|
* Update left-hand-side vector d = Q**T*d = ( d1 ) M
|
|
* ( d2 ) N-M
|
|
*
|
|
CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
|
|
$ MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
|
|
LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
|
|
*
|
|
* Solve T22*y2 = d2 for y2
|
|
*
|
|
IF( N.GT.M ) THEN
|
|
CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
|
|
$ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
INFO = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
|
|
END IF
|
|
*
|
|
* Set y1 = 0
|
|
*
|
|
DO 10 I = 1, M + P - N
|
|
Y( I ) = ZERO
|
|
10 CONTINUE
|
|
*
|
|
* Update d1 = d1 - T12*y2
|
|
*
|
|
CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
|
|
$ Y( M+P-N+1 ), 1, ONE, D, 1 )
|
|
*
|
|
* Solve triangular system: R11*x = d1
|
|
*
|
|
IF( M.GT.0 ) THEN
|
|
CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
|
|
$ D, M, INFO )
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
INFO = 2
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Copy D to X
|
|
*
|
|
CALL DCOPY( M, D, 1, X, 1 )
|
|
END IF
|
|
*
|
|
* Backward transformation y = Z**T *y
|
|
*
|
|
CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
|
|
$ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
|
|
$ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
|
|
WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DGGGLM
|
|
*
|
|
END
|
|
|