You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
4.6 KiB
182 lines
4.6 KiB
*> \brief \b DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAE2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlae2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlae2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlae2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION A, B, C, RT1, RT2
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
|
|
*> [ A B ]
|
|
*> [ B C ].
|
|
*> On return, RT1 is the eigenvalue of larger absolute value, and RT2
|
|
*> is the eigenvalue of smaller absolute value.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION
|
|
*> The (1,1) element of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION
|
|
*> The (1,2) and (2,1) elements of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION
|
|
*> The (2,2) element of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RT1
|
|
*> \verbatim
|
|
*> RT1 is DOUBLE PRECISION
|
|
*> The eigenvalue of larger absolute value.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RT2
|
|
*> \verbatim
|
|
*> RT2 is DOUBLE PRECISION
|
|
*> The eigenvalue of smaller absolute value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> RT1 is accurate to a few ulps barring over/underflow.
|
|
*>
|
|
*> RT2 may be inaccurate if there is massive cancellation in the
|
|
*> determinant A*C-B*B; higher precision or correctly rounded or
|
|
*> correctly truncated arithmetic would be needed to compute RT2
|
|
*> accurately in all cases.
|
|
*>
|
|
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
|
|
*> Underflow is harmless if the input data is 0 or exceeds
|
|
*> underflow_threshold / macheps.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION A, B, C, RT1, RT2
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D0 )
|
|
DOUBLE PRECISION TWO
|
|
PARAMETER ( TWO = 2.0D0 )
|
|
DOUBLE PRECISION ZERO
|
|
PARAMETER ( ZERO = 0.0D0 )
|
|
DOUBLE PRECISION HALF
|
|
PARAMETER ( HALF = 0.5D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION AB, ACMN, ACMX, ADF, DF, RT, SM, TB
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Compute the eigenvalues
|
|
*
|
|
SM = A + C
|
|
DF = A - C
|
|
ADF = ABS( DF )
|
|
TB = B + B
|
|
AB = ABS( TB )
|
|
IF( ABS( A ).GT.ABS( C ) ) THEN
|
|
ACMX = A
|
|
ACMN = C
|
|
ELSE
|
|
ACMX = C
|
|
ACMN = A
|
|
END IF
|
|
IF( ADF.GT.AB ) THEN
|
|
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
|
|
ELSE IF( ADF.LT.AB ) THEN
|
|
RT = AB*SQRT( ONE+( ADF / AB )**2 )
|
|
ELSE
|
|
*
|
|
* Includes case AB=ADF=0
|
|
*
|
|
RT = AB*SQRT( TWO )
|
|
END IF
|
|
IF( SM.LT.ZERO ) THEN
|
|
RT1 = HALF*( SM-RT )
|
|
*
|
|
* Order of execution important.
|
|
* To get fully accurate smaller eigenvalue,
|
|
* next line needs to be executed in higher precision.
|
|
*
|
|
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
|
ELSE IF( SM.GT.ZERO ) THEN
|
|
RT1 = HALF*( SM+RT )
|
|
*
|
|
* Order of execution important.
|
|
* To get fully accurate smaller eigenvalue,
|
|
* next line needs to be executed in higher precision.
|
|
*
|
|
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
|
ELSE
|
|
*
|
|
* Includes case RT1 = RT2 = 0
|
|
*
|
|
RT1 = HALF*RT
|
|
RT2 = -HALF*RT
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DLAE2
|
|
*
|
|
END
|
|
|