You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
646 lines
22 KiB
646 lines
22 KiB
*> \brief \b DLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAEBZ + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaebz.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaebz.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaebz.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
|
|
* RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
|
|
* NAB, WORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
|
|
* DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
|
|
* DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAEBZ contains the iteration loops which compute and use the
|
|
*> function N(w), which is the count of eigenvalues of a symmetric
|
|
*> tridiagonal matrix T less than or equal to its argument w. It
|
|
*> performs a choice of two types of loops:
|
|
*>
|
|
*> IJOB=1, followed by
|
|
*> IJOB=2: It takes as input a list of intervals and returns a list of
|
|
*> sufficiently small intervals whose union contains the same
|
|
*> eigenvalues as the union of the original intervals.
|
|
*> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
|
|
*> The output interval (AB(j,1),AB(j,2)] will contain
|
|
*> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
|
|
*>
|
|
*> IJOB=3: It performs a binary search in each input interval
|
|
*> (AB(j,1),AB(j,2)] for a point w(j) such that
|
|
*> N(w(j))=NVAL(j), and uses C(j) as the starting point of
|
|
*> the search. If such a w(j) is found, then on output
|
|
*> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
|
|
*> (AB(j,1),AB(j,2)] will be a small interval containing the
|
|
*> point where N(w) jumps through NVAL(j), unless that point
|
|
*> lies outside the initial interval.
|
|
*>
|
|
*> Note that the intervals are in all cases half-open intervals,
|
|
*> i.e., of the form (a,b] , which includes b but not a .
|
|
*>
|
|
*> To avoid underflow, the matrix should be scaled so that its largest
|
|
*> element is no greater than overflow**(1/2) * underflow**(1/4)
|
|
*> in absolute value. To assure the most accurate computation
|
|
*> of small eigenvalues, the matrix should be scaled to be
|
|
*> not much smaller than that, either.
|
|
*>
|
|
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
|
|
*> Matrix", Report CS41, Computer Science Dept., Stanford
|
|
*> University, July 21, 1966
|
|
*>
|
|
*> Note: the arguments are, in general, *not* checked for unreasonable
|
|
*> values.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] IJOB
|
|
*> \verbatim
|
|
*> IJOB is INTEGER
|
|
*> Specifies what is to be done:
|
|
*> = 1: Compute NAB for the initial intervals.
|
|
*> = 2: Perform bisection iteration to find eigenvalues of T.
|
|
*> = 3: Perform bisection iteration to invert N(w), i.e.,
|
|
*> to find a point which has a specified number of
|
|
*> eigenvalues of T to its left.
|
|
*> Other values will cause DLAEBZ to return with INFO=-1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NITMAX
|
|
*> \verbatim
|
|
*> NITMAX is INTEGER
|
|
*> The maximum number of "levels" of bisection to be
|
|
*> performed, i.e., an interval of width W will not be made
|
|
*> smaller than 2^(-NITMAX) * W. If not all intervals
|
|
*> have converged after NITMAX iterations, then INFO is set
|
|
*> to the number of non-converged intervals.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension n of the tridiagonal matrix T. It must be at
|
|
*> least 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MMAX
|
|
*> \verbatim
|
|
*> MMAX is INTEGER
|
|
*> The maximum number of intervals. If more than MMAX intervals
|
|
*> are generated, then DLAEBZ will quit with INFO=MMAX+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MINP
|
|
*> \verbatim
|
|
*> MINP is INTEGER
|
|
*> The initial number of intervals. It may not be greater than
|
|
*> MMAX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NBMIN
|
|
*> \verbatim
|
|
*> NBMIN is INTEGER
|
|
*> The smallest number of intervals that should be processed
|
|
*> using a vector loop. If zero, then only the scalar loop
|
|
*> will be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ABSTOL
|
|
*> \verbatim
|
|
*> ABSTOL is DOUBLE PRECISION
|
|
*> The minimum (absolute) width of an interval. When an
|
|
*> interval is narrower than ABSTOL, or than RELTOL times the
|
|
*> larger (in magnitude) endpoint, then it is considered to be
|
|
*> sufficiently small, i.e., converged. This must be at least
|
|
*> zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RELTOL
|
|
*> \verbatim
|
|
*> RELTOL is DOUBLE PRECISION
|
|
*> The minimum relative width of an interval. When an interval
|
|
*> is narrower than ABSTOL, or than RELTOL times the larger (in
|
|
*> magnitude) endpoint, then it is considered to be
|
|
*> sufficiently small, i.e., converged. Note: this should
|
|
*> always be at least radix*machine epsilon.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIVMIN
|
|
*> \verbatim
|
|
*> PIVMIN is DOUBLE PRECISION
|
|
*> The minimum absolute value of a "pivot" in the Sturm
|
|
*> sequence loop.
|
|
*> This must be at least max |e(j)**2|*safe_min and at
|
|
*> least safe_min, where safe_min is at least
|
|
*> the smallest number that can divide one without overflow.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal elements of the tridiagonal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N)
|
|
*> The offdiagonal elements of the tridiagonal matrix T in
|
|
*> positions 1 through N-1. E(N) is arbitrary.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E2
|
|
*> \verbatim
|
|
*> E2 is DOUBLE PRECISION array, dimension (N)
|
|
*> The squares of the offdiagonal elements of the tridiagonal
|
|
*> matrix T. E2(N) is ignored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (MINP)
|
|
*> If IJOB=1 or 2, not referenced.
|
|
*> If IJOB=3, the desired values of N(w). The elements of NVAL
|
|
*> will be reordered to correspond with the intervals in AB.
|
|
*> Thus, NVAL(j) on output will not, in general be the same as
|
|
*> NVAL(j) on input, but it will correspond with the interval
|
|
*> (AB(j,1),AB(j,2)] on output.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is DOUBLE PRECISION array, dimension (MMAX,2)
|
|
*> The endpoints of the intervals. AB(j,1) is a(j), the left
|
|
*> endpoint of the j-th interval, and AB(j,2) is b(j), the
|
|
*> right endpoint of the j-th interval. The input intervals
|
|
*> will, in general, be modified, split, and reordered by the
|
|
*> calculation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array, dimension (MMAX)
|
|
*> If IJOB=1, ignored.
|
|
*> If IJOB=2, workspace.
|
|
*> If IJOB=3, then on input C(j) should be initialized to the
|
|
*> first search point in the binary search.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] MOUT
|
|
*> \verbatim
|
|
*> MOUT is INTEGER
|
|
*> If IJOB=1, the number of eigenvalues in the intervals.
|
|
*> If IJOB=2 or 3, the number of intervals output.
|
|
*> If IJOB=3, MOUT will equal MINP.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] NAB
|
|
*> \verbatim
|
|
*> NAB is INTEGER array, dimension (MMAX,2)
|
|
*> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
|
|
*> If IJOB=2, then on input, NAB(i,j) should be set. It must
|
|
*> satisfy the condition:
|
|
*> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
|
|
*> which means that in interval i only eigenvalues
|
|
*> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
|
|
*> NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
|
|
*> IJOB=1.
|
|
*> On output, NAB(i,j) will contain
|
|
*> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
|
|
*> the input interval that the output interval
|
|
*> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
|
|
*> the input values of NAB(k,1) and NAB(k,2).
|
|
*> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
|
|
*> unless N(w) > NVAL(i) for all search points w , in which
|
|
*> case NAB(i,1) will not be modified, i.e., the output
|
|
*> value will be the same as the input value (modulo
|
|
*> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
|
|
*> for all search points w , in which case NAB(i,2) will
|
|
*> not be modified. Normally, NAB should be set to some
|
|
*> distinctive value(s) before DLAEBZ is called.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MMAX)
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MMAX)
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: All intervals converged.
|
|
*> = 1--MMAX: The last INFO intervals did not converge.
|
|
*> = MMAX+1: More than MMAX intervals were generated.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> This routine is intended to be called only by other LAPACK
|
|
*> routines, thus the interface is less user-friendly. It is intended
|
|
*> for two purposes:
|
|
*>
|
|
*> (a) finding eigenvalues. In this case, DLAEBZ should have one or
|
|
*> more initial intervals set up in AB, and DLAEBZ should be called
|
|
*> with IJOB=1. This sets up NAB, and also counts the eigenvalues.
|
|
*> Intervals with no eigenvalues would usually be thrown out at
|
|
*> this point. Also, if not all the eigenvalues in an interval i
|
|
*> are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
|
|
*> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
|
|
*> eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX
|
|
*> no smaller than the value of MOUT returned by the call with
|
|
*> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
|
|
*> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
|
|
*> tolerance specified by ABSTOL and RELTOL.
|
|
*>
|
|
*> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
|
|
*> In this case, start with a Gershgorin interval (a,b). Set up
|
|
*> AB to contain 2 search intervals, both initially (a,b). One
|
|
*> NVAL element should contain f-1 and the other should contain l
|
|
*> , while C should contain a and b, resp. NAB(i,1) should be -1
|
|
*> and NAB(i,2) should be N+1, to flag an error if the desired
|
|
*> interval does not lie in (a,b). DLAEBZ is then called with
|
|
*> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
|
|
*> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
|
|
*> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
|
|
*> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
|
|
*> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
|
|
*> w(l-r)=...=w(l+k) are handled similarly.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
|
|
$ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
|
|
$ NAB, WORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
|
|
DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
|
|
DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, TWO, HALF
|
|
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0,
|
|
$ HALF = 1.0D0 / TWO )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
|
|
$ KLNEW
|
|
DOUBLE PRECISION TMP1, TMP2
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Check for Errors
|
|
*
|
|
INFO = 0
|
|
IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
|
|
INFO = -1
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize NAB
|
|
*
|
|
IF( IJOB.EQ.1 ) THEN
|
|
*
|
|
* Compute the number of eigenvalues in the initial intervals.
|
|
*
|
|
MOUT = 0
|
|
DO 30 JI = 1, MINP
|
|
DO 20 JP = 1, 2
|
|
TMP1 = D( 1 ) - AB( JI, JP )
|
|
IF( ABS( TMP1 ).LT.PIVMIN )
|
|
$ TMP1 = -PIVMIN
|
|
NAB( JI, JP ) = 0
|
|
IF( TMP1.LE.ZERO )
|
|
$ NAB( JI, JP ) = 1
|
|
*
|
|
DO 10 J = 2, N
|
|
TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
|
|
IF( ABS( TMP1 ).LT.PIVMIN )
|
|
$ TMP1 = -PIVMIN
|
|
IF( TMP1.LE.ZERO )
|
|
$ NAB( JI, JP ) = NAB( JI, JP ) + 1
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
|
|
30 CONTINUE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize for loop
|
|
*
|
|
* KF and KL have the following meaning:
|
|
* Intervals 1,...,KF-1 have converged.
|
|
* Intervals KF,...,KL still need to be refined.
|
|
*
|
|
KF = 1
|
|
KL = MINP
|
|
*
|
|
* If IJOB=2, initialize C.
|
|
* If IJOB=3, use the user-supplied starting point.
|
|
*
|
|
IF( IJOB.EQ.2 ) THEN
|
|
DO 40 JI = 1, MINP
|
|
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* Iteration loop
|
|
*
|
|
DO 130 JIT = 1, NITMAX
|
|
*
|
|
* Loop over intervals
|
|
*
|
|
IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
|
|
*
|
|
* Begin of Parallel Version of the loop
|
|
*
|
|
DO 60 JI = KF, KL
|
|
*
|
|
* Compute N(c), the number of eigenvalues less than c
|
|
*
|
|
WORK( JI ) = D( 1 ) - C( JI )
|
|
IWORK( JI ) = 0
|
|
IF( WORK( JI ).LE.PIVMIN ) THEN
|
|
IWORK( JI ) = 1
|
|
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
|
|
END IF
|
|
*
|
|
DO 50 J = 2, N
|
|
WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
|
|
IF( WORK( JI ).LE.PIVMIN ) THEN
|
|
IWORK( JI ) = IWORK( JI ) + 1
|
|
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
|
|
END IF
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
IF( IJOB.LE.2 ) THEN
|
|
*
|
|
* IJOB=2: Choose all intervals containing eigenvalues.
|
|
*
|
|
KLNEW = KL
|
|
DO 70 JI = KF, KL
|
|
*
|
|
* Insure that N(w) is monotone
|
|
*
|
|
IWORK( JI ) = MIN( NAB( JI, 2 ),
|
|
$ MAX( NAB( JI, 1 ), IWORK( JI ) ) )
|
|
*
|
|
* Update the Queue -- add intervals if both halves
|
|
* contain eigenvalues.
|
|
*
|
|
IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
|
|
*
|
|
* No eigenvalue in the upper interval:
|
|
* just use the lower interval.
|
|
*
|
|
AB( JI, 2 ) = C( JI )
|
|
*
|
|
ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
|
|
*
|
|
* No eigenvalue in the lower interval:
|
|
* just use the upper interval.
|
|
*
|
|
AB( JI, 1 ) = C( JI )
|
|
ELSE
|
|
KLNEW = KLNEW + 1
|
|
IF( KLNEW.LE.MMAX ) THEN
|
|
*
|
|
* Eigenvalue in both intervals -- add upper to
|
|
* queue.
|
|
*
|
|
AB( KLNEW, 2 ) = AB( JI, 2 )
|
|
NAB( KLNEW, 2 ) = NAB( JI, 2 )
|
|
AB( KLNEW, 1 ) = C( JI )
|
|
NAB( KLNEW, 1 ) = IWORK( JI )
|
|
AB( JI, 2 ) = C( JI )
|
|
NAB( JI, 2 ) = IWORK( JI )
|
|
ELSE
|
|
INFO = MMAX + 1
|
|
END IF
|
|
END IF
|
|
70 CONTINUE
|
|
IF( INFO.NE.0 )
|
|
$ RETURN
|
|
KL = KLNEW
|
|
ELSE
|
|
*
|
|
* IJOB=3: Binary search. Keep only the interval containing
|
|
* w s.t. N(w) = NVAL
|
|
*
|
|
DO 80 JI = KF, KL
|
|
IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
|
|
AB( JI, 1 ) = C( JI )
|
|
NAB( JI, 1 ) = IWORK( JI )
|
|
END IF
|
|
IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
|
|
AB( JI, 2 ) = C( JI )
|
|
NAB( JI, 2 ) = IWORK( JI )
|
|
END IF
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* End of Parallel Version of the loop
|
|
*
|
|
* Begin of Serial Version of the loop
|
|
*
|
|
KLNEW = KL
|
|
DO 100 JI = KF, KL
|
|
*
|
|
* Compute N(w), the number of eigenvalues less than w
|
|
*
|
|
TMP1 = C( JI )
|
|
TMP2 = D( 1 ) - TMP1
|
|
ITMP1 = 0
|
|
IF( TMP2.LE.PIVMIN ) THEN
|
|
ITMP1 = 1
|
|
TMP2 = MIN( TMP2, -PIVMIN )
|
|
END IF
|
|
*
|
|
DO 90 J = 2, N
|
|
TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
|
|
IF( TMP2.LE.PIVMIN ) THEN
|
|
ITMP1 = ITMP1 + 1
|
|
TMP2 = MIN( TMP2, -PIVMIN )
|
|
END IF
|
|
90 CONTINUE
|
|
*
|
|
IF( IJOB.LE.2 ) THEN
|
|
*
|
|
* IJOB=2: Choose all intervals containing eigenvalues.
|
|
*
|
|
* Insure that N(w) is monotone
|
|
*
|
|
ITMP1 = MIN( NAB( JI, 2 ),
|
|
$ MAX( NAB( JI, 1 ), ITMP1 ) )
|
|
*
|
|
* Update the Queue -- add intervals if both halves
|
|
* contain eigenvalues.
|
|
*
|
|
IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
|
|
*
|
|
* No eigenvalue in the upper interval:
|
|
* just use the lower interval.
|
|
*
|
|
AB( JI, 2 ) = TMP1
|
|
*
|
|
ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
|
|
*
|
|
* No eigenvalue in the lower interval:
|
|
* just use the upper interval.
|
|
*
|
|
AB( JI, 1 ) = TMP1
|
|
ELSE IF( KLNEW.LT.MMAX ) THEN
|
|
*
|
|
* Eigenvalue in both intervals -- add upper to queue.
|
|
*
|
|
KLNEW = KLNEW + 1
|
|
AB( KLNEW, 2 ) = AB( JI, 2 )
|
|
NAB( KLNEW, 2 ) = NAB( JI, 2 )
|
|
AB( KLNEW, 1 ) = TMP1
|
|
NAB( KLNEW, 1 ) = ITMP1
|
|
AB( JI, 2 ) = TMP1
|
|
NAB( JI, 2 ) = ITMP1
|
|
ELSE
|
|
INFO = MMAX + 1
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
*
|
|
* IJOB=3: Binary search. Keep only the interval
|
|
* containing w s.t. N(w) = NVAL
|
|
*
|
|
IF( ITMP1.LE.NVAL( JI ) ) THEN
|
|
AB( JI, 1 ) = TMP1
|
|
NAB( JI, 1 ) = ITMP1
|
|
END IF
|
|
IF( ITMP1.GE.NVAL( JI ) ) THEN
|
|
AB( JI, 2 ) = TMP1
|
|
NAB( JI, 2 ) = ITMP1
|
|
END IF
|
|
END IF
|
|
100 CONTINUE
|
|
KL = KLNEW
|
|
*
|
|
END IF
|
|
*
|
|
* Check for convergence
|
|
*
|
|
KFNEW = KF
|
|
DO 110 JI = KF, KL
|
|
TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
|
|
TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
|
|
IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
|
|
$ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
|
|
*
|
|
* Converged -- Swap with position KFNEW,
|
|
* then increment KFNEW
|
|
*
|
|
IF( JI.GT.KFNEW ) THEN
|
|
TMP1 = AB( JI, 1 )
|
|
TMP2 = AB( JI, 2 )
|
|
ITMP1 = NAB( JI, 1 )
|
|
ITMP2 = NAB( JI, 2 )
|
|
AB( JI, 1 ) = AB( KFNEW, 1 )
|
|
AB( JI, 2 ) = AB( KFNEW, 2 )
|
|
NAB( JI, 1 ) = NAB( KFNEW, 1 )
|
|
NAB( JI, 2 ) = NAB( KFNEW, 2 )
|
|
AB( KFNEW, 1 ) = TMP1
|
|
AB( KFNEW, 2 ) = TMP2
|
|
NAB( KFNEW, 1 ) = ITMP1
|
|
NAB( KFNEW, 2 ) = ITMP2
|
|
IF( IJOB.EQ.3 ) THEN
|
|
ITMP1 = NVAL( JI )
|
|
NVAL( JI ) = NVAL( KFNEW )
|
|
NVAL( KFNEW ) = ITMP1
|
|
END IF
|
|
END IF
|
|
KFNEW = KFNEW + 1
|
|
END IF
|
|
110 CONTINUE
|
|
KF = KFNEW
|
|
*
|
|
* Choose Midpoints
|
|
*
|
|
DO 120 JI = KF, KL
|
|
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
|
|
120 CONTINUE
|
|
*
|
|
* If no more intervals to refine, quit.
|
|
*
|
|
IF( KF.GT.KL )
|
|
$ GO TO 140
|
|
130 CONTINUE
|
|
*
|
|
* Converged
|
|
*
|
|
140 CONTINUE
|
|
INFO = MAX( KL+1-KF, 0 )
|
|
MOUT = KL
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLAEBZ
|
|
*
|
|
END
|
|
|