You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
835 lines
30 KiB
835 lines
30 KiB
*> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAQR5 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
|
|
* SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
|
|
* LDU, NV, WV, LDWV, NH, WH, LDWH )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
|
|
* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
|
|
* LOGICAL WANTT, WANTZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
|
|
* $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
|
|
* $ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAQR5, called by DLAQR0, performs a
|
|
*> single small-bulge multi-shift QR sweep.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] WANTT
|
|
*> \verbatim
|
|
*> WANTT is LOGICAL
|
|
*> WANTT = .true. if the quasi-triangular Schur factor
|
|
*> is being computed. WANTT is set to .false. otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTZ
|
|
*> \verbatim
|
|
*> WANTZ is LOGICAL
|
|
*> WANTZ = .true. if the orthogonal Schur factor is being
|
|
*> computed. WANTZ is set to .false. otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KACC22
|
|
*> \verbatim
|
|
*> KACC22 is INTEGER with value 0, 1, or 2.
|
|
*> Specifies the computation mode of far-from-diagonal
|
|
*> orthogonal updates.
|
|
*> = 0: DLAQR5 does not accumulate reflections and does not
|
|
*> use matrix-matrix multiply to update far-from-diagonal
|
|
*> matrix entries.
|
|
*> = 1: DLAQR5 accumulates reflections and uses matrix-matrix
|
|
*> multiply to update the far-from-diagonal matrix entries.
|
|
*> = 2: Same as KACC22 = 1. This option used to enable exploiting
|
|
*> the 2-by-2 structure during matrix multiplications, but
|
|
*> this is no longer supported.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> N is the order of the Hessenberg matrix H upon which this
|
|
*> subroutine operates.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KTOP
|
|
*> \verbatim
|
|
*> KTOP is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KBOT
|
|
*> \verbatim
|
|
*> KBOT is INTEGER
|
|
*> These are the first and last rows and columns of an
|
|
*> isolated diagonal block upon which the QR sweep is to be
|
|
*> applied. It is assumed without a check that
|
|
*> either KTOP = 1 or H(KTOP,KTOP-1) = 0
|
|
*> and
|
|
*> either KBOT = N or H(KBOT+1,KBOT) = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSHFTS
|
|
*> \verbatim
|
|
*> NSHFTS is INTEGER
|
|
*> NSHFTS gives the number of simultaneous shifts. NSHFTS
|
|
*> must be positive and even.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] SR
|
|
*> \verbatim
|
|
*> SR is DOUBLE PRECISION array, dimension (NSHFTS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] SI
|
|
*> \verbatim
|
|
*> SI is DOUBLE PRECISION array, dimension (NSHFTS)
|
|
*> SR contains the real parts and SI contains the imaginary
|
|
*> parts of the NSHFTS shifts of origin that define the
|
|
*> multi-shift QR sweep. On output SR and SI may be
|
|
*> reordered.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] H
|
|
*> \verbatim
|
|
*> H is DOUBLE PRECISION array, dimension (LDH,N)
|
|
*> On input H contains a Hessenberg matrix. On output a
|
|
*> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
|
|
*> to the isolated diagonal block in rows and columns KTOP
|
|
*> through KBOT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDH
|
|
*> \verbatim
|
|
*> LDH is INTEGER
|
|
*> LDH is the leading dimension of H just as declared in the
|
|
*> calling procedure. LDH >= MAX(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILOZ
|
|
*> \verbatim
|
|
*> ILOZ is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHIZ
|
|
*> \verbatim
|
|
*> IHIZ is INTEGER
|
|
*> Specify the rows of Z to which transformations must be
|
|
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (LDZ,IHIZ)
|
|
*> If WANTZ = .TRUE., then the QR Sweep orthogonal
|
|
*> similarity transformation is accumulated into
|
|
*> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
|
|
*> If WANTZ = .FALSE., then Z is unreferenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> LDA is the leading dimension of Z just as declared in
|
|
*> the calling procedure. LDZ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is DOUBLE PRECISION array, dimension (LDV,NSHFTS/2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> LDV is the leading dimension of V as declared in the
|
|
*> calling procedure. LDV >= 3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is DOUBLE PRECISION array, dimension (LDU,2*NSHFTS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> LDU is the leading dimension of U just as declared in the
|
|
*> in the calling subroutine. LDU >= 2*NSHFTS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NV
|
|
*> \verbatim
|
|
*> NV is INTEGER
|
|
*> NV is the number of rows in WV agailable for workspace.
|
|
*> NV >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WV
|
|
*> \verbatim
|
|
*> WV is DOUBLE PRECISION array, dimension (LDWV,2*NSHFTS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWV
|
|
*> \verbatim
|
|
*> LDWV is INTEGER
|
|
*> LDWV is the leading dimension of WV as declared in the
|
|
*> in the calling subroutine. LDWV >= NV.
|
|
*> \endverbatim
|
|
*
|
|
*> \param[in] NH
|
|
*> \verbatim
|
|
*> NH is INTEGER
|
|
*> NH is the number of columns in array WH available for
|
|
*> workspace. NH >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WH
|
|
*> \verbatim
|
|
*> WH is DOUBLE PRECISION array, dimension (LDWH,NH)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWH
|
|
*> \verbatim
|
|
*> LDWH is INTEGER
|
|
*> Leading dimension of WH just as declared in the
|
|
*> calling procedure. LDWH >= 2*NSHFTS.
|
|
*> \endverbatim
|
|
*>
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Karen Braman and Ralph Byers, Department of Mathematics,
|
|
*> University of Kansas, USA
|
|
*>
|
|
*> Lars Karlsson, Daniel Kressner, and Bruno Lang
|
|
*>
|
|
*> Thijs Steel, Department of Computer science,
|
|
*> KU Leuven, Belgium
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
|
|
*> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
|
|
*> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
|
|
*> 929--947, 2002.
|
|
*>
|
|
*> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
|
|
*> chains of bulges in multishift QR algorithms.
|
|
*> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014).
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
|
|
$ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
|
|
$ LDU, NV, WV, LDWV, NH, WH, LDWH )
|
|
IMPLICIT NONE
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
|
|
$ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
|
|
LOGICAL WANTT, WANTZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
|
|
$ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* ================================================================
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM,
|
|
$ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2,
|
|
$ T3, TST1, TST2, ULP
|
|
INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN,
|
|
$ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
|
|
$ M, M22, MBOT, MTOP, NBMPS, NDCOL,
|
|
$ NS, NU
|
|
LOGICAL ACCUM, BMP22
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL DLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
*
|
|
INTRINSIC ABS, DBLE, MAX, MIN, MOD
|
|
* ..
|
|
* .. Local Arrays ..
|
|
DOUBLE PRECISION VT( 3 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DLACPY, DLAQR1, DLARFG, DLASET, DTRMM
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* ==== If there are no shifts, then there is nothing to do. ====
|
|
*
|
|
IF( NSHFTS.LT.2 )
|
|
$ RETURN
|
|
*
|
|
* ==== If the active block is empty or 1-by-1, then there
|
|
* . is nothing to do. ====
|
|
*
|
|
IF( KTOP.GE.KBOT )
|
|
$ RETURN
|
|
*
|
|
* ==== Shuffle shifts into pairs of real shifts and pairs
|
|
* . of complex conjugate shifts assuming complex
|
|
* . conjugate shifts are already adjacent to one
|
|
* . another. ====
|
|
*
|
|
DO 10 I = 1, NSHFTS - 2, 2
|
|
IF( SI( I ).NE.-SI( I+1 ) ) THEN
|
|
*
|
|
SWAP = SR( I )
|
|
SR( I ) = SR( I+1 )
|
|
SR( I+1 ) = SR( I+2 )
|
|
SR( I+2 ) = SWAP
|
|
*
|
|
SWAP = SI( I )
|
|
SI( I ) = SI( I+1 )
|
|
SI( I+1 ) = SI( I+2 )
|
|
SI( I+2 ) = SWAP
|
|
END IF
|
|
10 CONTINUE
|
|
*
|
|
* ==== NSHFTS is supposed to be even, but if it is odd,
|
|
* . then simply reduce it by one. The shuffle above
|
|
* . ensures that the dropped shift is real and that
|
|
* . the remaining shifts are paired. ====
|
|
*
|
|
NS = NSHFTS - MOD( NSHFTS, 2 )
|
|
*
|
|
* ==== Machine constants for deflation ====
|
|
*
|
|
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
|
|
SAFMAX = ONE / SAFMIN
|
|
ULP = DLAMCH( 'PRECISION' )
|
|
SMLNUM = SAFMIN*( DBLE( N ) / ULP )
|
|
*
|
|
* ==== Use accumulated reflections to update far-from-diagonal
|
|
* . entries ? ====
|
|
*
|
|
ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
|
|
*
|
|
* ==== clear trash ====
|
|
*
|
|
IF( KTOP+2.LE.KBOT )
|
|
$ H( KTOP+2, KTOP ) = ZERO
|
|
*
|
|
* ==== NBMPS = number of 2-shift bulges in the chain ====
|
|
*
|
|
NBMPS = NS / 2
|
|
*
|
|
* ==== KDU = width of slab ====
|
|
*
|
|
KDU = 4*NBMPS
|
|
*
|
|
* ==== Create and chase chains of NBMPS bulges ====
|
|
*
|
|
DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS
|
|
*
|
|
* JTOP = Index from which updates from the right start.
|
|
*
|
|
IF( ACCUM ) THEN
|
|
JTOP = MAX( KTOP, INCOL )
|
|
ELSE IF( WANTT ) THEN
|
|
JTOP = 1
|
|
ELSE
|
|
JTOP = KTOP
|
|
END IF
|
|
*
|
|
NDCOL = INCOL + KDU
|
|
IF( ACCUM )
|
|
$ CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
|
|
*
|
|
* ==== Near-the-diagonal bulge chase. The following loop
|
|
* . performs the near-the-diagonal part of a small bulge
|
|
* . multi-shift QR sweep. Each 4*NBMPS column diagonal
|
|
* . chunk extends from column INCOL to column NDCOL
|
|
* . (including both column INCOL and column NDCOL). The
|
|
* . following loop chases a 2*NBMPS+1 column long chain of
|
|
* . NBMPS bulges 2*NBMPS columns to the right. (INCOL
|
|
* . may be less than KTOP and and NDCOL may be greater than
|
|
* . KBOT indicating phantom columns from which to chase
|
|
* . bulges before they are actually introduced or to which
|
|
* . to chase bulges beyond column KBOT.) ====
|
|
*
|
|
DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 )
|
|
*
|
|
* ==== Bulges number MTOP to MBOT are active double implicit
|
|
* . shift bulges. There may or may not also be small
|
|
* . 2-by-2 bulge, if there is room. The inactive bulges
|
|
* . (if any) must wait until the active bulges have moved
|
|
* . down the diagonal to make room. The phantom matrix
|
|
* . paradigm described above helps keep track. ====
|
|
*
|
|
MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 )
|
|
MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 )
|
|
M22 = MBOT + 1
|
|
BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ.
|
|
$ ( KBOT-2 )
|
|
*
|
|
* ==== Generate reflections to chase the chain right
|
|
* . one column. (The minimum value of K is KTOP-1.) ====
|
|
*
|
|
IF ( BMP22 ) THEN
|
|
*
|
|
* ==== Special case: 2-by-2 reflection at bottom treated
|
|
* . separately ====
|
|
*
|
|
K = KRCOL + 2*( M22-1 )
|
|
IF( K.EQ.KTOP-1 ) THEN
|
|
CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
|
|
$ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
|
|
$ V( 1, M22 ) )
|
|
BETA = V( 1, M22 )
|
|
CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
|
|
ELSE
|
|
BETA = H( K+1, K )
|
|
V( 2, M22 ) = H( K+2, K )
|
|
CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
|
|
H( K+1, K ) = BETA
|
|
H( K+2, K ) = ZERO
|
|
END IF
|
|
|
|
*
|
|
* ==== Perform update from right within
|
|
* . computational window. ====
|
|
*
|
|
T1 = V( 1, M22 )
|
|
T2 = T1*V( 2, M22 )
|
|
DO 30 J = JTOP, MIN( KBOT, K+3 )
|
|
REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
|
|
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
|
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
|
30 CONTINUE
|
|
*
|
|
* ==== Perform update from left within
|
|
* . computational window. ====
|
|
*
|
|
IF( ACCUM ) THEN
|
|
JBOT = MIN( NDCOL, KBOT )
|
|
ELSE IF( WANTT ) THEN
|
|
JBOT = N
|
|
ELSE
|
|
JBOT = KBOT
|
|
END IF
|
|
T1 = V( 1, M22 )
|
|
T2 = T1*V( 2, M22 )
|
|
DO 40 J = K+1, JBOT
|
|
REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J )
|
|
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
|
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
|
40 CONTINUE
|
|
*
|
|
* ==== The following convergence test requires that
|
|
* . the tradition small-compared-to-nearby-diagonals
|
|
* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
|
|
* . criteria both be satisfied. The latter improves
|
|
* . accuracy in some examples. Falling back on an
|
|
* . alternate convergence criterion when TST1 or TST2
|
|
* . is zero (as done here) is traditional but probably
|
|
* . unnecessary. ====
|
|
*
|
|
IF( K.GE.KTOP ) THEN
|
|
IF( H( K+1, K ).NE.ZERO ) THEN
|
|
TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
|
|
IF( TST1.EQ.ZERO ) THEN
|
|
IF( K.GE.KTOP+1 )
|
|
$ TST1 = TST1 + ABS( H( K, K-1 ) )
|
|
IF( K.GE.KTOP+2 )
|
|
$ TST1 = TST1 + ABS( H( K, K-2 ) )
|
|
IF( K.GE.KTOP+3 )
|
|
$ TST1 = TST1 + ABS( H( K, K-3 ) )
|
|
IF( K.LE.KBOT-2 )
|
|
$ TST1 = TST1 + ABS( H( K+2, K+1 ) )
|
|
IF( K.LE.KBOT-3 )
|
|
$ TST1 = TST1 + ABS( H( K+3, K+1 ) )
|
|
IF( K.LE.KBOT-4 )
|
|
$ TST1 = TST1 + ABS( H( K+4, K+1 ) )
|
|
END IF
|
|
IF( ABS( H( K+1, K ) )
|
|
$ .LE.MAX( SMLNUM, ULP*TST1 ) ) THEN
|
|
H12 = MAX( ABS( H( K+1, K ) ),
|
|
$ ABS( H( K, K+1 ) ) )
|
|
H21 = MIN( ABS( H( K+1, K ) ),
|
|
$ ABS( H( K, K+1 ) ) )
|
|
H11 = MAX( ABS( H( K+1, K+1 ) ),
|
|
$ ABS( H( K, K )-H( K+1, K+1 ) ) )
|
|
H22 = MIN( ABS( H( K+1, K+1 ) ),
|
|
$ ABS( H( K, K )-H( K+1, K+1 ) ) )
|
|
SCL = H11 + H12
|
|
TST2 = H22*( H11 / SCL )
|
|
*
|
|
IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
|
|
$ MAX( SMLNUM, ULP*TST2 ) ) THEN
|
|
H( K+1, K ) = ZERO
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
* ==== Accumulate orthogonal transformations. ====
|
|
*
|
|
IF( ACCUM ) THEN
|
|
KMS = K - INCOL
|
|
T1 = V( 1, M22 )
|
|
T2 = T1*V( 2, M22 )
|
|
DO 50 J = MAX( 1, KTOP-INCOL ), KDU
|
|
REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 )
|
|
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
|
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
|
50 CONTINUE
|
|
ELSE IF( WANTZ ) THEN
|
|
T1 = V( 1, M22 )
|
|
T2 = T1*V( 2, M22 )
|
|
DO 60 J = ILOZ, IHIZ
|
|
REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 )
|
|
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
|
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
|
60 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* ==== Normal case: Chain of 3-by-3 reflections ====
|
|
*
|
|
DO 80 M = MBOT, MTOP, -1
|
|
K = KRCOL + 2*( M-1 )
|
|
IF( K.EQ.KTOP-1 ) THEN
|
|
CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
|
|
$ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
|
|
$ V( 1, M ) )
|
|
ALPHA = V( 1, M )
|
|
CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
|
|
ELSE
|
|
*
|
|
* ==== Perform delayed transformation of row below
|
|
* . Mth bulge. Exploit fact that first two elements
|
|
* . of row are actually zero. ====
|
|
*
|
|
T1 = V( 1, M )
|
|
T2 = T1*V( 2, M )
|
|
T3 = T1*V( 3, M )
|
|
REFSUM = V( 3, M )*H( K+3, K+2 )
|
|
H( K+3, K ) = -REFSUM*T1
|
|
H( K+3, K+1 ) = -REFSUM*T2
|
|
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
|
|
*
|
|
* ==== Calculate reflection to move
|
|
* . Mth bulge one step. ====
|
|
*
|
|
BETA = H( K+1, K )
|
|
V( 2, M ) = H( K+2, K )
|
|
V( 3, M ) = H( K+3, K )
|
|
CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
|
|
*
|
|
* ==== A Bulge may collapse because of vigilant
|
|
* . deflation or destructive underflow. In the
|
|
* . underflow case, try the two-small-subdiagonals
|
|
* . trick to try to reinflate the bulge. ====
|
|
*
|
|
IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
|
|
$ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
|
|
*
|
|
* ==== Typical case: not collapsed (yet). ====
|
|
*
|
|
H( K+1, K ) = BETA
|
|
H( K+2, K ) = ZERO
|
|
H( K+3, K ) = ZERO
|
|
ELSE
|
|
*
|
|
* ==== Atypical case: collapsed. Attempt to
|
|
* . reintroduce ignoring H(K+1,K) and H(K+2,K).
|
|
* . If the fill resulting from the new
|
|
* . reflector is too large, then abandon it.
|
|
* . Otherwise, use the new one. ====
|
|
*
|
|
CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
|
|
$ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
|
|
$ VT )
|
|
ALPHA = VT( 1 )
|
|
CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
|
|
T1 = VT( 1 )
|
|
T2 = T1*VT( 2 )
|
|
T3 = T1*VT( 3 )
|
|
REFSUM = H( K+1, K ) + VT( 2 )*H( K+2, K )
|
|
*
|
|
IF( ABS( H( K+2, K )-REFSUM*T2 )+
|
|
$ ABS( REFSUM*T3 ).GT.ULP*
|
|
$ ( ABS( H( K, K ) )+ABS( H( K+1,
|
|
$ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
|
|
*
|
|
* ==== Starting a new bulge here would
|
|
* . create non-negligible fill. Use
|
|
* . the old one with trepidation. ====
|
|
*
|
|
H( K+1, K ) = BETA
|
|
H( K+2, K ) = ZERO
|
|
H( K+3, K ) = ZERO
|
|
ELSE
|
|
*
|
|
* ==== Starting a new bulge here would
|
|
* . create only negligible fill.
|
|
* . Replace the old reflector with
|
|
* . the new one. ====
|
|
*
|
|
H( K+1, K ) = H( K+1, K ) - REFSUM*T1
|
|
H( K+2, K ) = ZERO
|
|
H( K+3, K ) = ZERO
|
|
V( 1, M ) = VT( 1 )
|
|
V( 2, M ) = VT( 2 )
|
|
V( 3, M ) = VT( 3 )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
* ==== Apply reflection from the right and
|
|
* . the first column of update from the left.
|
|
* . These updates are required for the vigilant
|
|
* . deflation check. We still delay most of the
|
|
* . updates from the left for efficiency. ====
|
|
*
|
|
T1 = V( 1, M )
|
|
T2 = T1*V( 2, M )
|
|
T3 = T1*V( 3, M )
|
|
DO 70 J = JTOP, MIN( KBOT, K+3 )
|
|
REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
|
|
$ + V( 3, M )*H( J, K+3 )
|
|
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
|
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
|
H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
|
|
70 CONTINUE
|
|
*
|
|
* ==== Perform update from left for subsequent
|
|
* . column. ====
|
|
*
|
|
REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 )
|
|
$ + V( 3, M )*H( K+3, K+1 )
|
|
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
|
|
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
|
|
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
|
|
*
|
|
* ==== The following convergence test requires that
|
|
* . the tradition small-compared-to-nearby-diagonals
|
|
* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
|
|
* . criteria both be satisfied. The latter improves
|
|
* . accuracy in some examples. Falling back on an
|
|
* . alternate convergence criterion when TST1 or TST2
|
|
* . is zero (as done here) is traditional but probably
|
|
* . unnecessary. ====
|
|
*
|
|
IF( K.LT.KTOP)
|
|
$ CYCLE
|
|
IF( H( K+1, K ).NE.ZERO ) THEN
|
|
TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
|
|
IF( TST1.EQ.ZERO ) THEN
|
|
IF( K.GE.KTOP+1 )
|
|
$ TST1 = TST1 + ABS( H( K, K-1 ) )
|
|
IF( K.GE.KTOP+2 )
|
|
$ TST1 = TST1 + ABS( H( K, K-2 ) )
|
|
IF( K.GE.KTOP+3 )
|
|
$ TST1 = TST1 + ABS( H( K, K-3 ) )
|
|
IF( K.LE.KBOT-2 )
|
|
$ TST1 = TST1 + ABS( H( K+2, K+1 ) )
|
|
IF( K.LE.KBOT-3 )
|
|
$ TST1 = TST1 + ABS( H( K+3, K+1 ) )
|
|
IF( K.LE.KBOT-4 )
|
|
$ TST1 = TST1 + ABS( H( K+4, K+1 ) )
|
|
END IF
|
|
IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
|
|
$ THEN
|
|
H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
|
|
H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
|
|
H11 = MAX( ABS( H( K+1, K+1 ) ),
|
|
$ ABS( H( K, K )-H( K+1, K+1 ) ) )
|
|
H22 = MIN( ABS( H( K+1, K+1 ) ),
|
|
$ ABS( H( K, K )-H( K+1, K+1 ) ) )
|
|
SCL = H11 + H12
|
|
TST2 = H22*( H11 / SCL )
|
|
*
|
|
IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
|
|
$ MAX( SMLNUM, ULP*TST2 ) ) THEN
|
|
H( K+1, K ) = ZERO
|
|
END IF
|
|
END IF
|
|
END IF
|
|
80 CONTINUE
|
|
*
|
|
* ==== Multiply H by reflections from the left ====
|
|
*
|
|
IF( ACCUM ) THEN
|
|
JBOT = MIN( NDCOL, KBOT )
|
|
ELSE IF( WANTT ) THEN
|
|
JBOT = N
|
|
ELSE
|
|
JBOT = KBOT
|
|
END IF
|
|
*
|
|
DO 100 M = MBOT, MTOP, -1
|
|
K = KRCOL + 2*( M-1 )
|
|
T1 = V( 1, M )
|
|
T2 = T1*V( 2, M )
|
|
T3 = T1*V( 3, M )
|
|
DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
|
|
REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J )
|
|
$ + V( 3, M )*H( K+3, J )
|
|
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
|
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
|
H( K+3, J ) = H( K+3, J ) - REFSUM*T3
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
*
|
|
* ==== Accumulate orthogonal transformations. ====
|
|
*
|
|
IF( ACCUM ) THEN
|
|
*
|
|
* ==== Accumulate U. (If needed, update Z later
|
|
* . with an efficient matrix-matrix
|
|
* . multiply.) ====
|
|
*
|
|
DO 120 M = MBOT, MTOP, -1
|
|
K = KRCOL + 2*( M-1 )
|
|
KMS = K - INCOL
|
|
I2 = MAX( 1, KTOP-INCOL )
|
|
I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
|
|
I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
|
|
T1 = V( 1, M )
|
|
T2 = T1*V( 2, M )
|
|
T3 = T1*V( 3, M )
|
|
DO 110 J = I2, I4
|
|
REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
|
|
$ + V( 3, M )*U( J, KMS+3 )
|
|
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
|
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
|
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
ELSE IF( WANTZ ) THEN
|
|
*
|
|
* ==== U is not accumulated, so update Z
|
|
* . now by multiplying by reflections
|
|
* . from the right. ====
|
|
*
|
|
DO 140 M = MBOT, MTOP, -1
|
|
K = KRCOL + 2*( M-1 )
|
|
T1 = V( 1, M )
|
|
T2 = T1*V( 2, M )
|
|
T3 = T1*V( 3, M )
|
|
DO 130 J = ILOZ, IHIZ
|
|
REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
|
|
$ + V( 3, M )*Z( J, K+3 )
|
|
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
|
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
|
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
END IF
|
|
*
|
|
* ==== End of near-the-diagonal bulge chase. ====
|
|
*
|
|
145 CONTINUE
|
|
*
|
|
* ==== Use U (if accumulated) to update far-from-diagonal
|
|
* . entries in H. If required, use U to update Z as
|
|
* . well. ====
|
|
*
|
|
IF( ACCUM ) THEN
|
|
IF( WANTT ) THEN
|
|
JTOP = 1
|
|
JBOT = N
|
|
ELSE
|
|
JTOP = KTOP
|
|
JBOT = KBOT
|
|
END IF
|
|
K1 = MAX( 1, KTOP-INCOL )
|
|
NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
|
|
*
|
|
* ==== Horizontal Multiply ====
|
|
*
|
|
DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
|
|
JLEN = MIN( NH, JBOT-JCOL+1 )
|
|
CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
|
|
$ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
|
|
$ LDWH )
|
|
CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
|
|
$ H( INCOL+K1, JCOL ), LDH )
|
|
150 CONTINUE
|
|
*
|
|
* ==== Vertical multiply ====
|
|
*
|
|
DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
|
|
JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
|
|
CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
|
|
$ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
|
|
$ LDU, ZERO, WV, LDWV )
|
|
CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
|
|
$ H( JROW, INCOL+K1 ), LDH )
|
|
160 CONTINUE
|
|
*
|
|
* ==== Z multiply (also vertical) ====
|
|
*
|
|
IF( WANTZ ) THEN
|
|
DO 170 JROW = ILOZ, IHIZ, NV
|
|
JLEN = MIN( NV, IHIZ-JROW+1 )
|
|
CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
|
|
$ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
|
|
$ LDU, ZERO, WV, LDWV )
|
|
CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
|
|
$ Z( JROW, INCOL+K1 ), LDZ )
|
|
170 CONTINUE
|
|
END IF
|
|
END IF
|
|
180 CONTINUE
|
|
*
|
|
* ==== End of DLAQR5 ====
|
|
*
|
|
END
|
|
|