You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
17 KiB
532 lines
17 KiB
*> \brief \b DLAQZ4
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAQZ4 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz4.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz4.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz4.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
|
|
* $ NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
|
|
* $ QC, LDQC, ZC, LDZC, WORK, LWORK, INFO )
|
|
* IMPLICIT NONE
|
|
*
|
|
* Function arguments
|
|
* LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
|
|
* INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
|
|
* $ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
|
|
*
|
|
* DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
|
|
* $ Q( LDQ, * ), Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ),
|
|
* $ WORK( * ), SR( * ), SI( * ), SS( * )
|
|
*
|
|
* INTEGER, INTENT( OUT ) :: INFO
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAQZ4 Executes a single multishift QZ sweep
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ILSCHUR
|
|
*> \verbatim
|
|
*> ILSCHUR is LOGICAL
|
|
*> Determines whether or not to update the full Schur form
|
|
*> \endverbatim
|
|
*> \param[in] ILQ
|
|
*> \verbatim
|
|
*> ILQ is LOGICAL
|
|
*> Determines whether or not to update the matrix Q
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILZ
|
|
*> \verbatim
|
|
*> ILZ is LOGICAL
|
|
*> Determines whether or not to update the matrix Z
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A, B, Q, and Z. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSHIFTS
|
|
*> \verbatim
|
|
*> NSHIFTS is INTEGER
|
|
*> The desired number of shifts to use
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NBLOCK_DESIRED
|
|
*> \verbatim
|
|
*> NBLOCK_DESIRED is INTEGER
|
|
*> The desired size of the computational windows
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SR
|
|
*> \verbatim
|
|
*> SR is DOUBLE PRECISION array. SR contains
|
|
*> the real parts of the shifts to use.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SI
|
|
*> \verbatim
|
|
*> SI is DOUBLE PRECISION array. SI contains
|
|
*> the imaginary parts of the shifts to use.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SS
|
|
*> \verbatim
|
|
*> SS is DOUBLE PRECISION array. SS contains
|
|
*> the scale of the shifts to use.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max( 1, N ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB, N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max( 1, N ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] QC
|
|
*> \verbatim
|
|
*> QC is DOUBLE PRECISION array, dimension (LDQC, NBLOCK_DESIRED)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQC
|
|
*> \verbatim
|
|
*> LDQC is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ZC
|
|
*> \verbatim
|
|
*> ZC is DOUBLE PRECISION array, dimension (LDZC, NBLOCK_DESIRED)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZC
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,N).
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Thijs Steel, KU Leuven
|
|
*
|
|
*> \date May 2020
|
|
*
|
|
*> \ingroup doubleGEcomputational
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
|
|
$ NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q,
|
|
$ LDQ, Z, LDZ, QC, LDQC, ZC, LDZC, WORK, LWORK,
|
|
$ INFO )
|
|
IMPLICIT NONE
|
|
|
|
* Function arguments
|
|
LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
|
|
INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
|
|
$ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
|
|
|
|
DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
|
|
$ Q( LDQ, * ), Z( LDZ, * ), QC( LDQC, * ),
|
|
$ ZC( LDZC, * ), WORK( * ), SR( * ), SI( * ),
|
|
$ SS( * )
|
|
|
|
INTEGER, INTENT( OUT ) :: INFO
|
|
|
|
* Parameters
|
|
DOUBLE PRECISION :: ZERO, ONE, HALF
|
|
PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
|
|
|
|
* Local scalars
|
|
INTEGER :: I, J, NS, ISTARTM, ISTOPM, SHEIGHT, SWIDTH, K, NP,
|
|
$ ISTARTB, ISTOPB, ISHIFT, NBLOCK, NPOS
|
|
DOUBLE PRECISION :: TEMP, V( 3 ), C1, S1, C2, S2, SWAP
|
|
*
|
|
* External functions
|
|
EXTERNAL :: XERBLA, DGEMM, DLAQZ1, DLAQZ2, DLASET, DLARTG, DROT,
|
|
$ DLACPY
|
|
|
|
INFO = 0
|
|
IF ( NBLOCK_DESIRED .LT. NSHIFTS+1 ) THEN
|
|
INFO = -8
|
|
END IF
|
|
IF ( LWORK .EQ.-1 ) THEN
|
|
* workspace query, quick return
|
|
WORK( 1 ) = N*NBLOCK_DESIRED
|
|
RETURN
|
|
ELSE IF ( LWORK .LT. N*NBLOCK_DESIRED ) THEN
|
|
INFO = -25
|
|
END IF
|
|
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLAQZ4', -INFO )
|
|
RETURN
|
|
END IF
|
|
|
|
* Executable statements
|
|
|
|
IF ( NSHIFTS .LT. 2 ) THEN
|
|
RETURN
|
|
END IF
|
|
|
|
IF ( ILO .GE. IHI ) THEN
|
|
RETURN
|
|
END IF
|
|
|
|
IF ( ILSCHUR ) THEN
|
|
ISTARTM = 1
|
|
ISTOPM = N
|
|
ELSE
|
|
ISTARTM = ILO
|
|
ISTOPM = IHI
|
|
END IF
|
|
|
|
* Shuffle shifts into pairs of real shifts and pairs
|
|
* of complex conjugate shifts assuming complex
|
|
* conjugate shifts are already adjacent to one
|
|
* another
|
|
|
|
DO I = 1, NSHIFTS-2, 2
|
|
IF( SI( I ).NE.-SI( I+1 ) ) THEN
|
|
*
|
|
SWAP = SR( I )
|
|
SR( I ) = SR( I+1 )
|
|
SR( I+1 ) = SR( I+2 )
|
|
SR( I+2 ) = SWAP
|
|
|
|
SWAP = SI( I )
|
|
SI( I ) = SI( I+1 )
|
|
SI( I+1 ) = SI( I+2 )
|
|
SI( I+2 ) = SWAP
|
|
|
|
SWAP = SS( I )
|
|
SS( I ) = SS( I+1 )
|
|
SS( I+1 ) = SS( I+2 )
|
|
SS( I+2 ) = SWAP
|
|
END IF
|
|
END DO
|
|
|
|
* NSHFTS is supposed to be even, but if it is odd,
|
|
* then simply reduce it by one. The shuffle above
|
|
* ensures that the dropped shift is real and that
|
|
* the remaining shifts are paired.
|
|
|
|
NS = NSHIFTS-MOD( NSHIFTS, 2 )
|
|
NPOS = MAX( NBLOCK_DESIRED-NS, 1 )
|
|
|
|
* The following block introduces the shifts and chases
|
|
* them down one by one just enough to make space for
|
|
* the other shifts. The near-the-diagonal block is
|
|
* of size (ns+1) x ns.
|
|
|
|
CALL DLASET( 'FULL', NS+1, NS+1, ZERO, ONE, QC, LDQC )
|
|
CALL DLASET( 'FULL', NS, NS, ZERO, ONE, ZC, LDZC )
|
|
|
|
DO I = 1, NS, 2
|
|
* Introduce the shift
|
|
CALL DLAQZ1( A( ILO, ILO ), LDA, B( ILO, ILO ), LDB, SR( I ),
|
|
$ SR( I+1 ), SI( I ), SS( I ), SS( I+1 ), V )
|
|
|
|
TEMP = V( 2 )
|
|
CALL DLARTG( TEMP, V( 3 ), C1, S1, V( 2 ) )
|
|
CALL DLARTG( V( 1 ), V( 2 ), C2, S2, TEMP )
|
|
|
|
CALL DROT( NS, A( ILO+1, ILO ), LDA, A( ILO+2, ILO ), LDA, C1,
|
|
$ S1 )
|
|
CALL DROT( NS, A( ILO, ILO ), LDA, A( ILO+1, ILO ), LDA, C2,
|
|
$ S2 )
|
|
CALL DROT( NS, B( ILO+1, ILO ), LDB, B( ILO+2, ILO ), LDB, C1,
|
|
$ S1 )
|
|
CALL DROT( NS, B( ILO, ILO ), LDB, B( ILO+1, ILO ), LDB, C2,
|
|
$ S2 )
|
|
CALL DROT( NS+1, QC( 1, 2 ), 1, QC( 1, 3 ), 1, C1, S1 )
|
|
CALL DROT( NS+1, QC( 1, 1 ), 1, QC( 1, 2 ), 1, C2, S2 )
|
|
|
|
* Chase the shift down
|
|
DO J = 1, NS-1-I
|
|
|
|
CALL DLAQZ2( .TRUE., .TRUE., J, 1, NS, IHI-ILO+1, A( ILO,
|
|
$ ILO ), LDA, B( ILO, ILO ), LDB, NS+1, 1, QC,
|
|
$ LDQC, NS, 1, ZC, LDZC )
|
|
|
|
END DO
|
|
|
|
END DO
|
|
|
|
* Update the rest of the pencil
|
|
|
|
* Update A(ilo:ilo+ns,ilo+ns:istopm) and B(ilo:ilo+ns,ilo+ns:istopm)
|
|
* from the left with Qc(1:ns+1,1:ns+1)'
|
|
SHEIGHT = NS+1
|
|
SWIDTH = ISTOPM-( ILO+NS )+1
|
|
IF ( SWIDTH > 0 ) THEN
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
|
|
$ A( ILO, ILO+NS ), LDA, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ILO,
|
|
$ ILO+NS ), LDA )
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
|
|
$ B( ILO, ILO+NS ), LDB, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ILO,
|
|
$ ILO+NS ), LDB )
|
|
END IF
|
|
IF ( ILQ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, SHEIGHT, SHEIGHT, ONE, Q( 1, ILO ),
|
|
$ LDQ, QC, LDQC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, SHEIGHT, WORK, N, Q( 1, ILO ), LDQ )
|
|
END IF
|
|
|
|
* Update A(istartm:ilo-1,ilo:ilo+ns-1) and B(istartm:ilo-1,ilo:ilo+ns-1)
|
|
* from the right with Zc(1:ns,1:ns)
|
|
SHEIGHT = ILO-1-ISTARTM+1
|
|
SWIDTH = NS
|
|
IF ( SHEIGHT > 0 ) THEN
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, A( ISTARTM,
|
|
$ ILO ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
|
|
$ ILO ), LDA )
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, B( ISTARTM,
|
|
$ ILO ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
|
|
$ ILO ), LDB )
|
|
END IF
|
|
IF ( ILZ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, SWIDTH, SWIDTH, ONE, Z( 1, ILO ), LDZ,
|
|
$ ZC, LDZC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, SWIDTH, WORK, N, Z( 1, ILO ), LDZ )
|
|
END IF
|
|
|
|
* The following block chases the shifts down to the bottom
|
|
* right block. If possible, a shift is moved down npos
|
|
* positions at a time
|
|
|
|
K = ILO
|
|
DO WHILE ( K < IHI-NS )
|
|
NP = MIN( IHI-NS-K, NPOS )
|
|
* Size of the near-the-diagonal block
|
|
NBLOCK = NS+NP
|
|
* istartb points to the first row we will be updating
|
|
ISTARTB = K+1
|
|
* istopb points to the last column we will be updating
|
|
ISTOPB = K+NBLOCK-1
|
|
|
|
CALL DLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, QC, LDQC )
|
|
CALL DLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, ZC, LDZC )
|
|
|
|
* Near the diagonal shift chase
|
|
DO I = NS-1, 0, -2
|
|
DO J = 0, NP-1
|
|
* Move down the block with index k+i+j-1, updating
|
|
* the (ns+np x ns+np) block:
|
|
* (k:k+ns+np,k:k+ns+np-1)
|
|
CALL DLAQZ2( .TRUE., .TRUE., K+I+J-1, ISTARTB, ISTOPB,
|
|
$ IHI, A, LDA, B, LDB, NBLOCK, K+1, QC, LDQC,
|
|
$ NBLOCK, K, ZC, LDZC )
|
|
END DO
|
|
END DO
|
|
|
|
* Update rest of the pencil
|
|
|
|
* Update A(k+1:k+ns+np, k+ns+np:istopm) and
|
|
* B(k+1:k+ns+np, k+ns+np:istopm)
|
|
* from the left with Qc(1:ns+np,1:ns+np)'
|
|
SHEIGHT = NS+NP
|
|
SWIDTH = ISTOPM-( K+NS+NP )+1
|
|
IF ( SWIDTH > 0 ) THEN
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
|
|
$ LDQC, A( K+1, K+NS+NP ), LDA, ZERO, WORK,
|
|
$ SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( K+1,
|
|
$ K+NS+NP ), LDA )
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
|
|
$ LDQC, B( K+1, K+NS+NP ), LDB, ZERO, WORK,
|
|
$ SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( K+1,
|
|
$ K+NS+NP ), LDB )
|
|
END IF
|
|
IF ( ILQ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Q( 1, K+1 ),
|
|
$ LDQ, QC, LDQC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, NBLOCK, WORK, N, Q( 1, K+1 ), LDQ )
|
|
END IF
|
|
|
|
* Update A(istartm:k,k:k+ns+npos-1) and B(istartm:k,k:k+ns+npos-1)
|
|
* from the right with Zc(1:ns+np,1:ns+np)
|
|
SHEIGHT = K-ISTARTM+1
|
|
SWIDTH = NBLOCK
|
|
IF ( SHEIGHT > 0 ) THEN
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
|
|
$ A( ISTARTM, K ), LDA, ZC, LDZC, ZERO, WORK,
|
|
$ SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
|
|
$ A( ISTARTM, K ), LDA )
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
|
|
$ B( ISTARTM, K ), LDB, ZC, LDZC, ZERO, WORK,
|
|
$ SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
|
|
$ B( ISTARTM, K ), LDB )
|
|
END IF
|
|
IF ( ILZ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Z( 1, K ),
|
|
$ LDZ, ZC, LDZC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, NBLOCK, WORK, N, Z( 1, K ), LDZ )
|
|
END IF
|
|
|
|
K = K+NP
|
|
|
|
END DO
|
|
|
|
* The following block removes the shifts from the bottom right corner
|
|
* one by one. Updates are initially applied to A(ihi-ns+1:ihi,ihi-ns:ihi).
|
|
|
|
CALL DLASET( 'FULL', NS, NS, ZERO, ONE, QC, LDQC )
|
|
CALL DLASET( 'FULL', NS+1, NS+1, ZERO, ONE, ZC, LDZC )
|
|
|
|
* istartb points to the first row we will be updating
|
|
ISTARTB = IHI-NS+1
|
|
* istopb points to the last column we will be updating
|
|
ISTOPB = IHI
|
|
|
|
DO I = 1, NS, 2
|
|
* Chase the shift down to the bottom right corner
|
|
DO ISHIFT = IHI-I-1, IHI-2
|
|
CALL DLAQZ2( .TRUE., .TRUE., ISHIFT, ISTARTB, ISTOPB, IHI,
|
|
$ A, LDA, B, LDB, NS, IHI-NS+1, QC, LDQC, NS+1,
|
|
$ IHI-NS, ZC, LDZC )
|
|
END DO
|
|
|
|
END DO
|
|
|
|
* Update rest of the pencil
|
|
|
|
* Update A(ihi-ns+1:ihi, ihi+1:istopm)
|
|
* from the left with Qc(1:ns,1:ns)'
|
|
SHEIGHT = NS
|
|
SWIDTH = ISTOPM-( IHI+1 )+1
|
|
IF ( SWIDTH > 0 ) THEN
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
|
|
$ A( IHI-NS+1, IHI+1 ), LDA, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
|
|
$ A( IHI-NS+1, IHI+1 ), LDA )
|
|
CALL DGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
|
|
$ B( IHI-NS+1, IHI+1 ), LDB, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
|
|
$ B( IHI-NS+1, IHI+1 ), LDB )
|
|
END IF
|
|
IF ( ILQ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, NS, NS, ONE, Q( 1, IHI-NS+1 ), LDQ,
|
|
$ QC, LDQC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, NS, WORK, N, Q( 1, IHI-NS+1 ), LDQ )
|
|
END IF
|
|
|
|
* Update A(istartm:ihi-ns,ihi-ns:ihi)
|
|
* from the right with Zc(1:ns+1,1:ns+1)
|
|
SHEIGHT = IHI-NS-ISTARTM+1
|
|
SWIDTH = NS+1
|
|
IF ( SHEIGHT > 0 ) THEN
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, A( ISTARTM,
|
|
$ IHI-NS ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
|
|
$ IHI-NS ), LDA )
|
|
CALL DGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, B( ISTARTM,
|
|
$ IHI-NS ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
|
|
CALL DLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
|
|
$ IHI-NS ), LDB )
|
|
END IF
|
|
IF ( ILZ ) THEN
|
|
CALL DGEMM( 'N', 'N', N, NS+1, NS+1, ONE, Z( 1, IHI-NS ), LDZ,
|
|
$ ZC, LDZC, ZERO, WORK, N )
|
|
CALL DLACPY( 'ALL', N, NS+1, WORK, N, Z( 1, IHI-NS ), LDZ )
|
|
END IF
|
|
|
|
END SUBROUTINE
|
|
|