Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

376 lines
11 KiB

*> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRJ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
* RTOL, OFFSET, W, WERR, WORK, IWORK,
* PIVMIN, SPDIAM, INFO )
*
* .. Scalar Arguments ..
* INTEGER IFIRST, ILAST, INFO, N, OFFSET
* DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION D( * ), E2( * ), W( * ),
* $ WERR( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given the initial eigenvalue approximations of T, DLARRJ
*> does bisection to refine the eigenvalues of T,
*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
*> guesses for these eigenvalues are input in W, the corresponding estimate
*> of the error in these guesses in WERR. During bisection, intervals
*> [left, right] are maintained by storing their mid-points and
*> semi-widths in the arrays W and WERR respectively.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The N diagonal elements of T.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*> E2 is DOUBLE PRECISION array, dimension (N-1)
*> The Squares of the (N-1) subdiagonal elements of T.
*> \endverbatim
*>
*> \param[in] IFIRST
*> \verbatim
*> IFIRST is INTEGER
*> The index of the first eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] ILAST
*> \verbatim
*> ILAST is INTEGER
*> The index of the last eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] RTOL
*> \verbatim
*> RTOL is DOUBLE PRECISION
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
*> \endverbatim
*>
*> \param[in] OFFSET
*> \verbatim
*> OFFSET is INTEGER
*> Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
*> through ILAST-OFFSET elements of these arrays are to be used.
*> \endverbatim
*>
*> \param[in,out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
*> estimates of the eigenvalues of L D L^T indexed IFIRST through
*> ILAST.
*> On output, these estimates are refined.
*> \endverbatim
*>
*> \param[in,out] WERR
*> \verbatim
*> WERR is DOUBLE PRECISION array, dimension (N)
*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
*> the errors in the estimates of the corresponding elements in W.
*> On output, these errors are refined.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[in] SPDIAM
*> \verbatim
*> SPDIAM is DOUBLE PRECISION
*> The spectral diameter of T.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> Error flag.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
$ RTOL, OFFSET, W, WERR, WORK, IWORK,
$ PIVMIN, SPDIAM, INFO )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N, OFFSET
DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E2( * ), W( * ),
$ WERR( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXITR
* ..
* .. Local Scalars ..
INTEGER CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
$ OLNINT, P, PREV, SAVI1
DOUBLE PRECISION DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
*
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RETURN
END IF
*
MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
*
* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
* for an unconverged interval is set to the index of the next unconverged
* interval, and is -1 or 0 for a converged interval. Thus a linked
* list of unconverged intervals is set up.
*
I1 = IFIRST
I2 = ILAST
* The number of unconverged intervals
NINT = 0
* The last unconverged interval found
PREV = 0
DO 75 I = I1, I2
K = 2*I
II = I - OFFSET
LEFT = W( II ) - WERR( II )
MID = W(II)
RIGHT = W( II ) + WERR( II )
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
* The following test prevents the test of converged intervals
IF( WIDTH.LT.RTOL*TMP ) THEN
* This interval has already converged and does not need refinement.
* (Note that the gaps might change through refining the
* eigenvalues, however, they can only get bigger.)
* Remove it from the list.
IWORK( K-1 ) = -1
* Make sure that I1 always points to the first unconverged interval
IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
ELSE
* unconverged interval found
PREV = I
* Make sure that [LEFT,RIGHT] contains the desired eigenvalue
*
* Do while( CNT(LEFT).GT.I-1 )
*
FAC = ONE
20 CONTINUE
CNT = 0
S = LEFT
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 30 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
30 CONTINUE
IF( CNT.GT.I-1 ) THEN
LEFT = LEFT - WERR( II )*FAC
FAC = TWO*FAC
GO TO 20
END IF
*
* Do while( CNT(RIGHT).LT.I )
*
FAC = ONE
50 CONTINUE
CNT = 0
S = RIGHT
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 60 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
60 CONTINUE
IF( CNT.LT.I ) THEN
RIGHT = RIGHT + WERR( II )*FAC
FAC = TWO*FAC
GO TO 50
END IF
NINT = NINT + 1
IWORK( K-1 ) = I + 1
IWORK( K ) = CNT
END IF
WORK( K-1 ) = LEFT
WORK( K ) = RIGHT
75 CONTINUE
SAVI1 = I1
*
* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
* and while (ITER.LT.MAXITR)
*
ITER = 0
80 CONTINUE
PREV = I1 - 1
I = I1
OLNINT = NINT
DO 100 P = 1, OLNINT
K = 2*I
II = I - OFFSET
NEXT = IWORK( K-1 )
LEFT = WORK( K-1 )
RIGHT = WORK( K )
MID = HALF*( LEFT + RIGHT )
* semiwidth of interval
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
IF( ( WIDTH.LT.RTOL*TMP ) .OR.
$ (ITER.EQ.MAXITR) )THEN
* reduce number of unconverged intervals
NINT = NINT - 1
* Mark interval as converged.
IWORK( K-1 ) = 0
IF( I1.EQ.I ) THEN
I1 = NEXT
ELSE
* Prev holds the last unconverged interval previously examined
IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
END IF
I = NEXT
GO TO 100
END IF
PREV = I
*
* Perform one bisection step
*
CNT = 0
S = MID
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 90 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
90 CONTINUE
IF( CNT.LE.I-1 ) THEN
WORK( K-1 ) = MID
ELSE
WORK( K ) = MID
END IF
I = NEXT
100 CONTINUE
ITER = ITER + 1
* do another loop if there are still unconverged intervals
* However, in the last iteration, all intervals are accepted
* since this is the best we can do.
IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
*
*
* At this point, all the intervals have converged
DO 110 I = SAVI1, ILAST
K = 2*I
II = I - OFFSET
* All intervals marked by '0' have been refined.
IF( IWORK( K-1 ).EQ.0 ) THEN
W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
WERR( II ) = WORK( K ) - W( II )
END IF
110 CONTINUE
*
RETURN
*
* End of DLARRJ
*
END