You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
6.6 KiB
253 lines
6.6 KiB
*> \brief \b DLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLARRK + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrk.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrk.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrk.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLARRK( N, IW, GL, GU,
|
|
* D, E2, PIVMIN, RELTOL, W, WERR, INFO)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, IW, N
|
|
* DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E2( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLARRK computes one eigenvalue of a symmetric tridiagonal
|
|
*> matrix T to suitable accuracy. This is an auxiliary code to be
|
|
*> called from DSTEMR.
|
|
*>
|
|
*> To avoid overflow, the matrix must be scaled so that its
|
|
*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
|
|
*> accuracy, it should not be much smaller than that.
|
|
*>
|
|
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
|
|
*> Matrix", Report CS41, Computer Science Dept., Stanford
|
|
*> University, July 21, 1966.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the tridiagonal matrix T. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IW
|
|
*> \verbatim
|
|
*> IW is INTEGER
|
|
*> The index of the eigenvalues to be returned.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] GL
|
|
*> \verbatim
|
|
*> GL is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] GU
|
|
*> \verbatim
|
|
*> GU is DOUBLE PRECISION
|
|
*> An upper and a lower bound on the eigenvalue.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The n diagonal elements of the tridiagonal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E2
|
|
*> \verbatim
|
|
*> E2 is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIVMIN
|
|
*> \verbatim
|
|
*> PIVMIN is DOUBLE PRECISION
|
|
*> The minimum pivot allowed in the Sturm sequence for T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RELTOL
|
|
*> \verbatim
|
|
*> RELTOL is DOUBLE PRECISION
|
|
*> The minimum relative width of an interval. When an interval
|
|
*> is narrower than RELTOL times the larger (in
|
|
*> magnitude) endpoint, then it is considered to be
|
|
*> sufficiently small, i.e., converged. Note: this should
|
|
*> always be at least radix*machine epsilon.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WERR
|
|
*> \verbatim
|
|
*> WERR is DOUBLE PRECISION
|
|
*> The error bound on the corresponding eigenvalue approximation
|
|
*> in W.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: Eigenvalue converged
|
|
*> = -1: Eigenvalue did NOT converge
|
|
*> \endverbatim
|
|
*
|
|
*> \par Internal Parameters:
|
|
* =========================
|
|
*>
|
|
*> \verbatim
|
|
*> FUDGE DOUBLE PRECISION, default = 2
|
|
*> A "fudge factor" to widen the Gershgorin intervals.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLARRK( N, IW, GL, GU,
|
|
$ D, E2, PIVMIN, RELTOL, W, WERR, INFO)
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, IW, N
|
|
DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E2( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION FUDGE, HALF, TWO, ZERO
|
|
PARAMETER ( HALF = 0.5D0, TWO = 2.0D0,
|
|
$ FUDGE = TWO, ZERO = 0.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IT, ITMAX, NEGCNT
|
|
DOUBLE PRECISION ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
|
|
$ TMP2, TNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL DLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, INT, LOG, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
INFO = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants
|
|
EPS = DLAMCH( 'P' )
|
|
|
|
TNORM = MAX( ABS( GL ), ABS( GU ) )
|
|
RTOLI = RELTOL
|
|
ATOLI = FUDGE*TWO*PIVMIN
|
|
|
|
ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
|
|
$ LOG( TWO ) ) + 2
|
|
|
|
INFO = -1
|
|
|
|
LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
|
|
RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
|
|
IT = 0
|
|
|
|
10 CONTINUE
|
|
*
|
|
* Check if interval converged or maximum number of iterations reached
|
|
*
|
|
TMP1 = ABS( RIGHT - LEFT )
|
|
TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
|
|
IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
|
|
INFO = 0
|
|
GOTO 30
|
|
ENDIF
|
|
IF(IT.GT.ITMAX)
|
|
$ GOTO 30
|
|
|
|
*
|
|
* Count number of negative pivots for mid-point
|
|
*
|
|
IT = IT + 1
|
|
MID = HALF * (LEFT + RIGHT)
|
|
NEGCNT = 0
|
|
TMP1 = D( 1 ) - MID
|
|
IF( ABS( TMP1 ).LT.PIVMIN )
|
|
$ TMP1 = -PIVMIN
|
|
IF( TMP1.LE.ZERO )
|
|
$ NEGCNT = NEGCNT + 1
|
|
*
|
|
DO 20 I = 2, N
|
|
TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
|
|
IF( ABS( TMP1 ).LT.PIVMIN )
|
|
$ TMP1 = -PIVMIN
|
|
IF( TMP1.LE.ZERO )
|
|
$ NEGCNT = NEGCNT + 1
|
|
20 CONTINUE
|
|
|
|
IF(NEGCNT.GE.IW) THEN
|
|
RIGHT = MID
|
|
ELSE
|
|
LEFT = MID
|
|
ENDIF
|
|
GOTO 10
|
|
|
|
30 CONTINUE
|
|
*
|
|
* Converged or maximum number of iterations reached
|
|
*
|
|
W = HALF * (LEFT + RIGHT)
|
|
WERR = HALF * ABS( RIGHT - LEFT )
|
|
|
|
RETURN
|
|
*
|
|
* End of DLARRK
|
|
*
|
|
END
|
|
|