Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

162 lines
3.8 KiB

!> \brief \b DLARTG generates a plane rotation with real cosine and real sine.
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
! Definition:
! ===========
!
! SUBROUTINE DLARTG( F, G, C, S, R )
!
! .. Scalar Arguments ..
! REAL(wp) C, F, G, R, S
! ..
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> DLARTG generates a plane rotation so that
!>
!> [ C S ] . [ F ] = [ R ]
!> [ -S C ] [ G ] [ 0 ]
!>
!> where C**2 + S**2 = 1.
!>
!> The mathematical formulas used for C and S are
!> R = sign(F) * sqrt(F**2 + G**2)
!> C = F / R
!> S = G / R
!> Hence C >= 0. The algorithm used to compute these quantities
!> incorporates scaling to avoid overflow or underflow in computing the
!> square root of the sum of squares.
!>
!> This version is discontinuous in R at F = 0 but it returns the same
!> C and S as ZLARTG for complex inputs (F,0) and (G,0).
!>
!> This is a more accurate version of the BLAS1 routine DROTG,
!> with the following other differences:
!> F and G are unchanged on return.
!> If G=0, then C=1 and S=0.
!> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any
!> floating point operations (saves work in DBDSQR when
!> there are zeros on the diagonal).
!>
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
!> \endverbatim
!
! Arguments:
! ==========
!
!> \param[in] F
!> \verbatim
!> F is REAL(wp)
!> The first component of vector to be rotated.
!> \endverbatim
!>
!> \param[in] G
!> \verbatim
!> G is REAL(wp)
!> The second component of vector to be rotated.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL(wp)
!> The cosine of the rotation.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is REAL(wp)
!> The sine of the rotation.
!> \endverbatim
!>
!> \param[out] R
!> \verbatim
!> R is REAL(wp)
!> The nonzero component of the rotated vector.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Edward Anderson, Lockheed Martin
!
!> \date July 2016
!
!> \ingroup OTHERauxiliary
!
!> \par Contributors:
! ==================
!>
!> Weslley Pereira, University of Colorado Denver, USA
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
subroutine DLARTG( f, g, c, s, r )
use LA_CONSTANTS, &
only: wp=>dp, zero=>dzero, half=>dhalf, one=>done, &
safmin=>dsafmin, safmax=>dsafmax
!
! -- LAPACK auxiliary routine --
! -- LAPACK is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! February 2021
!
! .. Scalar Arguments ..
real(wp) :: c, f, g, r, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, fs, g1, gs, u, rtmin, rtmax
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, sign, sqrt
! ..
! .. Constants ..
rtmin = sqrt( safmin )
rtmax = sqrt( safmax/2 )
! ..
! .. Executable Statements ..
!
f1 = abs( f )
g1 = abs( g )
if( g == zero ) then
c = one
s = zero
r = f
else if( f == zero ) then
c = zero
s = sign( one, g )
r = g1
else if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
d = sqrt( f*f + g*g )
c = f1 / d
r = sign( d, f )
s = g / r
else
u = min( safmax, max( safmin, f1, g1 ) )
fs = f / u
gs = g / u
d = sqrt( fs*fs + gs*gs )
c = abs( fs ) / d
r = sign( d, f )
s = gs / r
r = r*u
end if
return
end subroutine