You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.1 KiB
158 lines
4.1 KiB
*> \brief \b DLARTGS generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLARTGS + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlartgs.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlartgs.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlartgs.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLARTGS( X, Y, SIGMA, CS, SN )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION CS, SIGMA, SN, X, Y
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLARTGS generates a plane rotation designed to introduce a bulge in
|
|
*> Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD
|
|
*> problem. X and Y are the top-row entries, and SIGMA is the shift.
|
|
*> The computed CS and SN define a plane rotation satisfying
|
|
*>
|
|
*> [ CS SN ] . [ X^2 - SIGMA ] = [ R ],
|
|
*> [ -SN CS ] [ X * Y ] [ 0 ]
|
|
*>
|
|
*> with R nonnegative. If X^2 - SIGMA and X * Y are 0, then the
|
|
*> rotation is by PI/2.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION
|
|
*> The (1,1) entry of an upper bidiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Y
|
|
*> \verbatim
|
|
*> Y is DOUBLE PRECISION
|
|
*> The (1,2) entry of an upper bidiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SIGMA
|
|
*> \verbatim
|
|
*> SIGMA is DOUBLE PRECISION
|
|
*> The shift.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] CS
|
|
*> \verbatim
|
|
*> CS is DOUBLE PRECISION
|
|
*> The cosine of the rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SN
|
|
*> \verbatim
|
|
*> SN is DOUBLE PRECISION
|
|
*> The sine of the rotation.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLARTGS( X, Y, SIGMA, CS, SN )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION CS, SIGMA, SN, X, Y
|
|
* ..
|
|
*
|
|
* ===================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION NEGONE, ONE, ZERO
|
|
PARAMETER ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION R, S, THRESH, W, Z
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLARTGP
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL DLAMCH
|
|
* .. Executable Statements ..
|
|
*
|
|
THRESH = DLAMCH('E')
|
|
*
|
|
* Compute the first column of B**T*B - SIGMA^2*I, up to a scale
|
|
* factor.
|
|
*
|
|
IF( (SIGMA .EQ. ZERO .AND. ABS(X) .LT. THRESH) .OR.
|
|
$ (ABS(X) .EQ. SIGMA .AND. Y .EQ. ZERO) ) THEN
|
|
Z = ZERO
|
|
W = ZERO
|
|
ELSE IF( SIGMA .EQ. ZERO ) THEN
|
|
IF( X .GE. ZERO ) THEN
|
|
Z = X
|
|
W = Y
|
|
ELSE
|
|
Z = -X
|
|
W = -Y
|
|
END IF
|
|
ELSE IF( ABS(X) .LT. THRESH ) THEN
|
|
Z = -SIGMA*SIGMA
|
|
W = ZERO
|
|
ELSE
|
|
IF( X .GE. ZERO ) THEN
|
|
S = ONE
|
|
ELSE
|
|
S = NEGONE
|
|
END IF
|
|
Z = S * (ABS(X)-SIGMA) * (S+SIGMA/X)
|
|
W = S * Y
|
|
END IF
|
|
*
|
|
* Generate the rotation.
|
|
* CALL DLARTGP( Z, W, CS, SN, R ) might seem more natural;
|
|
* reordering the arguments ensures that if Z = 0 then the rotation
|
|
* is by PI/2.
|
|
*
|
|
CALL DLARTGP( W, Z, SN, CS, R )
|
|
*
|
|
RETURN
|
|
*
|
|
* End DLARTGS
|
|
*
|
|
END
|
|
|
|
|