You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
14 KiB
479 lines
14 KiB
*> \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLASY2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
|
|
* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL LTRANL, LTRANR
|
|
* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
|
|
* DOUBLE PRECISION SCALE, XNORM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
|
|
* $ X( LDX, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
|
|
*>
|
|
*> op(TL)*X + ISGN*X*op(TR) = SCALE*B,
|
|
*>
|
|
*> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
|
|
*> -1. op(T) = T or T**T, where T**T denotes the transpose of T.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] LTRANL
|
|
*> \verbatim
|
|
*> LTRANL is LOGICAL
|
|
*> On entry, LTRANL specifies the op(TL):
|
|
*> = .FALSE., op(TL) = TL,
|
|
*> = .TRUE., op(TL) = TL**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LTRANR
|
|
*> \verbatim
|
|
*> LTRANR is LOGICAL
|
|
*> On entry, LTRANR specifies the op(TR):
|
|
*> = .FALSE., op(TR) = TR,
|
|
*> = .TRUE., op(TR) = TR**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ISGN
|
|
*> \verbatim
|
|
*> ISGN is INTEGER
|
|
*> On entry, ISGN specifies the sign of the equation
|
|
*> as described before. ISGN may only be 1 or -1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N1
|
|
*> \verbatim
|
|
*> N1 is INTEGER
|
|
*> On entry, N1 specifies the order of matrix TL.
|
|
*> N1 may only be 0, 1 or 2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N2
|
|
*> \verbatim
|
|
*> N2 is INTEGER
|
|
*> On entry, N2 specifies the order of matrix TR.
|
|
*> N2 may only be 0, 1 or 2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TL
|
|
*> \verbatim
|
|
*> TL is DOUBLE PRECISION array, dimension (LDTL,2)
|
|
*> On entry, TL contains an N1 by N1 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDTL
|
|
*> \verbatim
|
|
*> LDTL is INTEGER
|
|
*> The leading dimension of the matrix TL. LDTL >= max(1,N1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TR
|
|
*> \verbatim
|
|
*> TR is DOUBLE PRECISION array, dimension (LDTR,2)
|
|
*> On entry, TR contains an N2 by N2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDTR
|
|
*> \verbatim
|
|
*> LDTR is INTEGER
|
|
*> The leading dimension of the matrix TR. LDTR >= max(1,N2).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,2)
|
|
*> On entry, the N1 by N2 matrix B contains the right-hand
|
|
*> side of the equation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the matrix B. LDB >= max(1,N1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is DOUBLE PRECISION
|
|
*> On exit, SCALE contains the scale factor. SCALE is chosen
|
|
*> less than or equal to 1 to prevent the solution overflowing.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension (LDX,2)
|
|
*> On exit, X contains the N1 by N2 solution.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the matrix X. LDX >= max(1,N1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XNORM
|
|
*> \verbatim
|
|
*> XNORM is DOUBLE PRECISION
|
|
*> On exit, XNORM is the infinity-norm of the solution.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> On exit, INFO is set to
|
|
*> 0: successful exit.
|
|
*> 1: TL and TR have too close eigenvalues, so TL or
|
|
*> TR is perturbed to get a nonsingular equation.
|
|
*> NOTE: In the interests of speed, this routine does not
|
|
*> check the inputs for errors.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleSYauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
|
|
$ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL LTRANL, LTRANR
|
|
INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
|
|
DOUBLE PRECISION SCALE, XNORM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
|
|
$ X( LDX, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
DOUBLE PRECISION TWO, HALF, EIGHT
|
|
PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL BSWAP, XSWAP
|
|
INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
|
|
DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
|
|
$ TEMP, U11, U12, U22, XMAX
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
|
|
INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
|
|
$ LOCU22( 4 )
|
|
DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL IDAMAX, DLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
|
|
$ LOCU22 / 4, 3, 2, 1 /
|
|
DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
|
|
DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Do not check the input parameters for errors
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N1.EQ.0 .OR. N2.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Set constants to control overflow
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' ) / EPS
|
|
SGN = ISGN
|
|
*
|
|
K = N1 + N1 + N2 - 2
|
|
GO TO ( 10, 20, 30, 50 )K
|
|
*
|
|
* 1 by 1: TL11*X + SGN*X*TR11 = B11
|
|
*
|
|
10 CONTINUE
|
|
TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
|
|
BET = ABS( TAU1 )
|
|
IF( BET.LE.SMLNUM ) THEN
|
|
TAU1 = SMLNUM
|
|
BET = SMLNUM
|
|
INFO = 1
|
|
END IF
|
|
*
|
|
SCALE = ONE
|
|
GAM = ABS( B( 1, 1 ) )
|
|
IF( SMLNUM*GAM.GT.BET )
|
|
$ SCALE = ONE / GAM
|
|
*
|
|
X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
|
|
XNORM = ABS( X( 1, 1 ) )
|
|
RETURN
|
|
*
|
|
* 1 by 2:
|
|
* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12]
|
|
* [TR21 TR22]
|
|
*
|
|
20 CONTINUE
|
|
*
|
|
SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
|
|
$ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
|
|
$ SMLNUM )
|
|
TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
|
|
TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
|
|
IF( LTRANR ) THEN
|
|
TMP( 2 ) = SGN*TR( 2, 1 )
|
|
TMP( 3 ) = SGN*TR( 1, 2 )
|
|
ELSE
|
|
TMP( 2 ) = SGN*TR( 1, 2 )
|
|
TMP( 3 ) = SGN*TR( 2, 1 )
|
|
END IF
|
|
BTMP( 1 ) = B( 1, 1 )
|
|
BTMP( 2 ) = B( 1, 2 )
|
|
GO TO 40
|
|
*
|
|
* 2 by 1:
|
|
* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11]
|
|
* [TL21 TL22] [X21] [X21] [B21]
|
|
*
|
|
30 CONTINUE
|
|
SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
|
|
$ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
|
|
$ SMLNUM )
|
|
TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
|
|
TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
|
|
IF( LTRANL ) THEN
|
|
TMP( 2 ) = TL( 1, 2 )
|
|
TMP( 3 ) = TL( 2, 1 )
|
|
ELSE
|
|
TMP( 2 ) = TL( 2, 1 )
|
|
TMP( 3 ) = TL( 1, 2 )
|
|
END IF
|
|
BTMP( 1 ) = B( 1, 1 )
|
|
BTMP( 2 ) = B( 2, 1 )
|
|
40 CONTINUE
|
|
*
|
|
* Solve 2 by 2 system using complete pivoting.
|
|
* Set pivots less than SMIN to SMIN.
|
|
*
|
|
IPIV = IDAMAX( 4, TMP, 1 )
|
|
U11 = TMP( IPIV )
|
|
IF( ABS( U11 ).LE.SMIN ) THEN
|
|
INFO = 1
|
|
U11 = SMIN
|
|
END IF
|
|
U12 = TMP( LOCU12( IPIV ) )
|
|
L21 = TMP( LOCL21( IPIV ) ) / U11
|
|
U22 = TMP( LOCU22( IPIV ) ) - U12*L21
|
|
XSWAP = XSWPIV( IPIV )
|
|
BSWAP = BSWPIV( IPIV )
|
|
IF( ABS( U22 ).LE.SMIN ) THEN
|
|
INFO = 1
|
|
U22 = SMIN
|
|
END IF
|
|
IF( BSWAP ) THEN
|
|
TEMP = BTMP( 2 )
|
|
BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
|
|
BTMP( 1 ) = TEMP
|
|
ELSE
|
|
BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
|
|
END IF
|
|
SCALE = ONE
|
|
IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
|
|
$ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
|
|
SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
|
|
BTMP( 1 ) = BTMP( 1 )*SCALE
|
|
BTMP( 2 ) = BTMP( 2 )*SCALE
|
|
END IF
|
|
X2( 2 ) = BTMP( 2 ) / U22
|
|
X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
|
|
IF( XSWAP ) THEN
|
|
TEMP = X2( 2 )
|
|
X2( 2 ) = X2( 1 )
|
|
X2( 1 ) = TEMP
|
|
END IF
|
|
X( 1, 1 ) = X2( 1 )
|
|
IF( N1.EQ.1 ) THEN
|
|
X( 1, 2 ) = X2( 2 )
|
|
XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
|
|
ELSE
|
|
X( 2, 1 ) = X2( 2 )
|
|
XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
|
|
END IF
|
|
RETURN
|
|
*
|
|
* 2 by 2:
|
|
* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
|
|
* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
|
|
*
|
|
* Solve equivalent 4 by 4 system using complete pivoting.
|
|
* Set pivots less than SMIN to SMIN.
|
|
*
|
|
50 CONTINUE
|
|
SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
|
|
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
|
|
SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
|
|
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
|
|
SMIN = MAX( EPS*SMIN, SMLNUM )
|
|
BTMP( 1 ) = ZERO
|
|
CALL DCOPY( 16, BTMP, 0, T16, 1 )
|
|
T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
|
|
T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
|
|
T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
|
|
T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
|
|
IF( LTRANL ) THEN
|
|
T16( 1, 2 ) = TL( 2, 1 )
|
|
T16( 2, 1 ) = TL( 1, 2 )
|
|
T16( 3, 4 ) = TL( 2, 1 )
|
|
T16( 4, 3 ) = TL( 1, 2 )
|
|
ELSE
|
|
T16( 1, 2 ) = TL( 1, 2 )
|
|
T16( 2, 1 ) = TL( 2, 1 )
|
|
T16( 3, 4 ) = TL( 1, 2 )
|
|
T16( 4, 3 ) = TL( 2, 1 )
|
|
END IF
|
|
IF( LTRANR ) THEN
|
|
T16( 1, 3 ) = SGN*TR( 1, 2 )
|
|
T16( 2, 4 ) = SGN*TR( 1, 2 )
|
|
T16( 3, 1 ) = SGN*TR( 2, 1 )
|
|
T16( 4, 2 ) = SGN*TR( 2, 1 )
|
|
ELSE
|
|
T16( 1, 3 ) = SGN*TR( 2, 1 )
|
|
T16( 2, 4 ) = SGN*TR( 2, 1 )
|
|
T16( 3, 1 ) = SGN*TR( 1, 2 )
|
|
T16( 4, 2 ) = SGN*TR( 1, 2 )
|
|
END IF
|
|
BTMP( 1 ) = B( 1, 1 )
|
|
BTMP( 2 ) = B( 2, 1 )
|
|
BTMP( 3 ) = B( 1, 2 )
|
|
BTMP( 4 ) = B( 2, 2 )
|
|
*
|
|
* Perform elimination
|
|
*
|
|
DO 100 I = 1, 3
|
|
XMAX = ZERO
|
|
DO 70 IP = I, 4
|
|
DO 60 JP = I, 4
|
|
IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
|
|
XMAX = ABS( T16( IP, JP ) )
|
|
IPSV = IP
|
|
JPSV = JP
|
|
END IF
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
IF( IPSV.NE.I ) THEN
|
|
CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
|
|
TEMP = BTMP( I )
|
|
BTMP( I ) = BTMP( IPSV )
|
|
BTMP( IPSV ) = TEMP
|
|
END IF
|
|
IF( JPSV.NE.I )
|
|
$ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
|
|
JPIV( I ) = JPSV
|
|
IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
|
|
INFO = 1
|
|
T16( I, I ) = SMIN
|
|
END IF
|
|
DO 90 J = I + 1, 4
|
|
T16( J, I ) = T16( J, I ) / T16( I, I )
|
|
BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
|
|
DO 80 K = I + 1, 4
|
|
T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
IF( ABS( T16( 4, 4 ) ).LT.SMIN ) THEN
|
|
INFO = 1
|
|
T16( 4, 4 ) = SMIN
|
|
END IF
|
|
SCALE = ONE
|
|
IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
|
|
$ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
|
|
$ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
|
|
$ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
|
|
SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
|
|
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
|
|
BTMP( 1 ) = BTMP( 1 )*SCALE
|
|
BTMP( 2 ) = BTMP( 2 )*SCALE
|
|
BTMP( 3 ) = BTMP( 3 )*SCALE
|
|
BTMP( 4 ) = BTMP( 4 )*SCALE
|
|
END IF
|
|
DO 120 I = 1, 4
|
|
K = 5 - I
|
|
TEMP = ONE / T16( K, K )
|
|
TMP( K ) = BTMP( K )*TEMP
|
|
DO 110 J = K + 1, 4
|
|
TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
DO 130 I = 1, 3
|
|
IF( JPIV( 4-I ).NE.4-I ) THEN
|
|
TEMP = TMP( 4-I )
|
|
TMP( 4-I ) = TMP( JPIV( 4-I ) )
|
|
TMP( JPIV( 4-I ) ) = TEMP
|
|
END IF
|
|
130 CONTINUE
|
|
X( 1, 1 ) = TMP( 1 )
|
|
X( 2, 1 ) = TMP( 2 )
|
|
X( 1, 2 ) = TMP( 3 )
|
|
X( 2, 2 ) = TMP( 4 )
|
|
XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
|
|
$ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
|
|
RETURN
|
|
*
|
|
* End of DLASY2
|
|
*
|
|
END
|
|
|