You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
4.2 KiB
155 lines
4.2 KiB
*> \brief \b DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DPTTS2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptts2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptts2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptts2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DPTTS2 solves a tridiagonal system of the form
|
|
*> A * X = B
|
|
*> using the L*D*L**T factorization of A computed by DPTTRF. D is a
|
|
*> diagonal matrix specified in the vector D, L is a unit bidiagonal
|
|
*> matrix whose subdiagonal is specified in the vector E, and X and B
|
|
*> are N by NRHS matrices.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the tridiagonal matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The n diagonal elements of the diagonal matrix D from the
|
|
*> L*D*L**T factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (n-1) subdiagonal elements of the unit bidiagonal factor
|
|
*> L from the L*D*L**T factorization of A. E can also be regarded
|
|
*> as the superdiagonal of the unit bidiagonal factor U from the
|
|
*> factorization A = U**T*D*U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On entry, the right hand side vectors B for the system of
|
|
*> linear equations.
|
|
*> On exit, the solution vectors, X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doublePTcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DSCAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.1 ) THEN
|
|
IF( N.EQ.1 )
|
|
$ CALL DSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Solve A * X = B using the factorization A = L*D*L**T,
|
|
* overwriting each right hand side vector with its solution.
|
|
*
|
|
DO 30 J = 1, NRHS
|
|
*
|
|
* Solve L * x = b.
|
|
*
|
|
DO 10 I = 2, N
|
|
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
|
|
10 CONTINUE
|
|
*
|
|
* Solve D * L**T * x = b.
|
|
*
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
DO 20 I = N - 1, 1, -1
|
|
B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DPTTS2
|
|
*
|
|
END
|
|
|