You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
6.8 KiB
220 lines
6.8 KiB
*> \brief <b> SGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver)
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGBSV + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbsv.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbsv.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbsv.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* REAL AB( LDAB, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGBSV computes the solution to a real system of linear equations
|
|
*> A * X = B, where A is a band matrix of order N with KL subdiagonals
|
|
*> and KU superdiagonals, and X and B are N-by-NRHS matrices.
|
|
*>
|
|
*> The LU decomposition with partial pivoting and row interchanges is
|
|
*> used to factor A as A = L * U, where L is a product of permutation
|
|
*> and unit lower triangular matrices with KL subdiagonals, and U is
|
|
*> upper triangular with KL+KU superdiagonals. The factored form of A
|
|
*> is then used to solve the system of equations A * X = B.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of linear equations, i.e., the order of the
|
|
*> matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is REAL array, dimension (LDAB,N)
|
|
*> On entry, the matrix A in band storage, in rows KL+1 to
|
|
*> 2*KL+KU+1; rows 1 to KL of the array need not be set.
|
|
*> The j-th column of A is stored in the j-th column of the
|
|
*> array AB as follows:
|
|
*> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
|
|
*> On exit, details of the factorization: U is stored as an
|
|
*> upper triangular band matrix with KL+KU superdiagonals in
|
|
*> rows 1 to KL+KU+1, and the multipliers used during the
|
|
*> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
|
|
*> See below for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices that define the permutation matrix P;
|
|
*> row i of the matrix was interchanged with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB,NRHS)
|
|
*> On entry, the N-by-NRHS right hand side matrix B.
|
|
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
|
*> has been completed, but the factor U is exactly
|
|
*> singular, and the solution has not been computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGBsolve
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The band storage scheme is illustrated by the following example, when
|
|
*> M = N = 6, KL = 2, KU = 1:
|
|
*>
|
|
*> On entry: On exit:
|
|
*>
|
|
*> * * * + + + * * * u14 u25 u36
|
|
*> * * + + + + * * u13 u24 u35 u46
|
|
*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
|
|
*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
|
|
*> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
|
|
*> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
|
|
*>
|
|
*> Array elements marked * are not used by the routine; elements marked
|
|
*> + need not be set on entry, but are required by the routine to store
|
|
*> elements of U because of fill-in resulting from the row interchanges.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
REAL AB( LDAB, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGBTRF, SGBTRS, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( KL.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KU.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
|
|
INFO = -9
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGBSV ', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute the LU factorization of the band matrix A.
|
|
*
|
|
CALL SGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
|
|
IF( INFO.EQ.0 ) THEN
|
|
*
|
|
* Solve the system A*X = B, overwriting B with X.
|
|
*
|
|
CALL SGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
|
|
$ B, LDB, INFO )
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of SGBSV
|
|
*
|
|
END
|
|
|