You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
7.4 KiB
274 lines
7.4 KiB
*> \brief \b SGELQF
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGELQF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelqf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelqf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelqf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGELQF computes an LQ factorization of a real M-by-N matrix A:
|
|
*>
|
|
*> A = ( L 0 ) * Q
|
|
*>
|
|
*> where:
|
|
*>
|
|
*> Q is a N-by-N orthogonal matrix;
|
|
*> L is a lower-triangular M-by-M matrix;
|
|
*> 0 is a M-by-(N-M) zero matrix, if M < N.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the elements on and below the diagonal of the array
|
|
*> contain the m-by-min(m,n) lower trapezoidal matrix L (L is
|
|
*> lower triangular if m <= n); the elements above the diagonal,
|
|
*> with the array TAU, represent the orthogonal matrix Q as a
|
|
*> product of elementary reflectors (see Further Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors (see Further
|
|
*> Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,M).
|
|
*> For optimum performance LWORK >= M*NB, where NB is the
|
|
*> optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix Q is represented as a product of elementary reflectors
|
|
*>
|
|
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**T
|
|
*>
|
|
*> where tau is a real scalar, and v is a real vector with
|
|
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
|
|
*> and tau in TAU(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
|
|
$ NBMIN, NX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGELQ2, SLARFB, SLARFT, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
NB = ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
|
|
LWKOPT = M*NB
|
|
WORK( 1 ) = LWKOPT
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGELQF', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
K = MIN( M, N )
|
|
IF( K.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
NBMIN = 2
|
|
NX = 0
|
|
IWS = M
|
|
IF( NB.GT.1 .AND. NB.LT.K ) THEN
|
|
*
|
|
* Determine when to cross over from blocked to unblocked code.
|
|
*
|
|
NX = MAX( 0, ILAENV( 3, 'SGELQF', ' ', M, N, -1, -1 ) )
|
|
IF( NX.LT.K ) THEN
|
|
*
|
|
* Determine if workspace is large enough for blocked code.
|
|
*
|
|
LDWORK = M
|
|
IWS = LDWORK*NB
|
|
IF( LWORK.LT.IWS ) THEN
|
|
*
|
|
* Not enough workspace to use optimal NB: reduce NB and
|
|
* determine the minimum value of NB.
|
|
*
|
|
NB = LWORK / LDWORK
|
|
NBMIN = MAX( 2, ILAENV( 2, 'SGELQF', ' ', M, N, -1,
|
|
$ -1 ) )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
|
|
*
|
|
* Use blocked code initially
|
|
*
|
|
DO 10 I = 1, K - NX, NB
|
|
IB = MIN( K-I+1, NB )
|
|
*
|
|
* Compute the LQ factorization of the current block
|
|
* A(i:i+ib-1,i:n)
|
|
*
|
|
CALL SGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
|
|
$ IINFO )
|
|
IF( I+IB.LE.M ) THEN
|
|
*
|
|
* Form the triangular factor of the block reflector
|
|
* H = H(i) H(i+1) . . . H(i+ib-1)
|
|
*
|
|
CALL SLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
|
|
$ LDA, TAU( I ), WORK, LDWORK )
|
|
*
|
|
* Apply H to A(i+ib:m,i:n) from the right
|
|
*
|
|
CALL SLARFB( 'Right', 'No transpose', 'Forward',
|
|
$ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
|
|
$ LDA, WORK, LDWORK, A( I+IB, I ), LDA,
|
|
$ WORK( IB+1 ), LDWORK )
|
|
END IF
|
|
10 CONTINUE
|
|
ELSE
|
|
I = 1
|
|
END IF
|
|
*
|
|
* Use unblocked code to factor the last or only block.
|
|
*
|
|
IF( I.LE.K )
|
|
$ CALL SGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
|
|
$ IINFO )
|
|
*
|
|
WORK( 1 ) = IWS
|
|
RETURN
|
|
*
|
|
* End of SGELQF
|
|
*
|
|
END
|
|
|