You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
5.0 KiB
190 lines
5.0 KiB
*> \brief \b SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGEQL2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeql2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeql2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeql2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGEQL2( M, N, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGEQL2 computes a QL factorization of a real m by n matrix A:
|
|
*> A = Q * L.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> On entry, the m by n matrix A.
|
|
*> On exit, if m >= n, the lower triangle of the subarray
|
|
*> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
|
|
*> if m <= n, the elements on and below the (n-m)-th
|
|
*> superdiagonal contain the m by n lower trapezoidal matrix L;
|
|
*> the remaining elements, with the array TAU, represent the
|
|
*> orthogonal matrix Q as a product of elementary reflectors
|
|
*> (see Further Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors (see Further
|
|
*> Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix Q is represented as a product of elementary reflectors
|
|
*>
|
|
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**T
|
|
*>
|
|
*> where tau is a real scalar, and v is a real vector with
|
|
*> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
|
|
*> A(1:m-k+i-1,n-k+i), and tau in TAU(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SGEQL2( M, N, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE
|
|
PARAMETER ( ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, K
|
|
REAL AII
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLARF, SLARFG, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGEQL2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
K = MIN( M, N )
|
|
*
|
|
DO 10 I = K, 1, -1
|
|
*
|
|
* Generate elementary reflector H(i) to annihilate
|
|
* A(1:m-k+i-1,n-k+i)
|
|
*
|
|
CALL SLARFG( M-K+I, A( M-K+I, N-K+I ), A( 1, N-K+I ), 1,
|
|
$ TAU( I ) )
|
|
*
|
|
* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left
|
|
*
|
|
AII = A( M-K+I, N-K+I )
|
|
A( M-K+I, N-K+I ) = ONE
|
|
CALL SLARF( 'Left', M-K+I, N-K+I-1, A( 1, N-K+I ), 1, TAU( I ),
|
|
$ A, LDA, WORK )
|
|
A( M-K+I, N-K+I ) = AII
|
|
10 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of SGEQL2
|
|
*
|
|
END
|
|
|