You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
6.0 KiB
224 lines
6.0 KiB
*> \brief \b SGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGEQRT2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqrt2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqrt2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqrt2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGEQRT2( M, N, A, LDA, T, LDT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDT, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGEQRT2 computes a QR factorization of a real M-by-N matrix A,
|
|
*> using the compact WY representation of Q.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> On entry, the real M-by-N matrix A. On exit, the elements on and
|
|
*> above the diagonal contain the N-by-N upper triangular matrix R; the
|
|
*> elements below the diagonal are the columns of V. See below for
|
|
*> further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is REAL array, dimension (LDT,N)
|
|
*> The N-by-N upper triangular factor of the block reflector.
|
|
*> The elements on and above the diagonal contain the block
|
|
*> reflector T; the elements below the diagonal are not used.
|
|
*> See below for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix V stores the elementary reflectors H(i) in the i-th column
|
|
*> below the diagonal. For example, if M=5 and N=3, the matrix V is
|
|
*>
|
|
*> V = ( 1 )
|
|
*> ( v1 1 )
|
|
*> ( v1 v2 1 )
|
|
*> ( v1 v2 v3 )
|
|
*> ( v1 v2 v3 )
|
|
*>
|
|
*> where the vi's represent the vectors which define H(i), which are returned
|
|
*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
|
|
*> block reflector H is then given by
|
|
*>
|
|
*> H = I - V * T * V**T
|
|
*>
|
|
*> where V**T is the transpose of V.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SGEQRT2( M, N, A, LDA, T, LDT, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDT, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), T( LDT, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER( ONE = 1.0, ZERO = 0.0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, K
|
|
REAL AII, ALPHA
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLARFG, SGEMV, SGER, STRMV, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( M.LT.N ) THEN
|
|
INFO = -1
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGEQRT2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
K = MIN( M, N )
|
|
*
|
|
DO I = 1, K
|
|
*
|
|
* Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
|
|
*
|
|
CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
|
|
$ T( I, 1 ) )
|
|
IF( I.LT.N ) THEN
|
|
*
|
|
* Apply H(i) to A(I:M,I+1:N) from the left
|
|
*
|
|
AII = A( I, I )
|
|
A( I, I ) = ONE
|
|
*
|
|
* W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
|
|
*
|
|
CALL SGEMV( 'T',M-I+1, N-I, ONE, A( I, I+1 ), LDA,
|
|
$ A( I, I ), 1, ZERO, T( 1, N ), 1 )
|
|
*
|
|
* A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
|
|
*
|
|
ALPHA = -(T( I, 1 ))
|
|
CALL SGER( M-I+1, N-I, ALPHA, A( I, I ), 1,
|
|
$ T( 1, N ), 1, A( I, I+1 ), LDA )
|
|
A( I, I ) = AII
|
|
END IF
|
|
END DO
|
|
*
|
|
DO I = 2, N
|
|
AII = A( I, I )
|
|
A( I, I ) = ONE
|
|
*
|
|
* T(1:I-1,I) := alpha * A(I:M,1:I-1)**T * A(I:M,I)
|
|
*
|
|
ALPHA = -T( I, 1 )
|
|
CALL SGEMV( 'T', M-I+1, I-1, ALPHA, A( I, 1 ), LDA,
|
|
$ A( I, I ), 1, ZERO, T( 1, I ), 1 )
|
|
A( I, I ) = AII
|
|
*
|
|
* T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
|
|
*
|
|
CALL STRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
|
|
*
|
|
* T(I,I) = tau(I)
|
|
*
|
|
T( I, I ) = T( I, 1 )
|
|
T( I, 1) = ZERO
|
|
END DO
|
|
|
|
*
|
|
* End of SGEQRT2
|
|
*
|
|
END
|
|
|