You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
6.0 KiB
230 lines
6.0 KiB
*> \brief \b SGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGETC2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetc2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetc2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetc2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGETC2( N, A, LDA, IPIV, JPIV, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * ), JPIV( * )
|
|
* REAL A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGETC2 computes an LU factorization with complete pivoting of the
|
|
*> n-by-n matrix A. The factorization has the form A = P * L * U * Q,
|
|
*> where P and Q are permutation matrices, L is lower triangular with
|
|
*> unit diagonal elements and U is upper triangular.
|
|
*>
|
|
*> This is the Level 2 BLAS algorithm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA, N)
|
|
*> On entry, the n-by-n matrix A to be factored.
|
|
*> On exit, the factors L and U from the factorization
|
|
*> A = P*L*U*Q; the unit diagonal elements of L are not stored.
|
|
*> If U(k, k) appears to be less than SMIN, U(k, k) is given the
|
|
*> value of SMIN, i.e., giving a nonsingular perturbed system.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension(N).
|
|
*> The pivot indices; for 1 <= i <= N, row i of the
|
|
*> matrix has been interchanged with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] JPIV
|
|
*> \verbatim
|
|
*> JPIV is INTEGER array, dimension(N).
|
|
*> The pivot indices; for 1 <= j <= N, column j of the
|
|
*> matrix has been interchanged with column JPIV(j).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> > 0: if INFO = k, U(k, k) is likely to produce overflow if
|
|
*> we try to solve for x in Ax = b. So U is perturbed to
|
|
*> avoid the overflow.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGEauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGETC2( N, A, LDA, IPIV, JPIV, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * ), JPIV( * )
|
|
REAL A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IP, IPV, J, JP, JPV
|
|
REAL BIGNUM, EPS, SMIN, SMLNUM, XMAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGER, SSWAP
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Set constants to control overflow
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Handle the case N=1 by itself
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
IPIV( 1 ) = 1
|
|
JPIV( 1 ) = 1
|
|
IF( ABS( A( 1, 1 ) ).LT.SMLNUM ) THEN
|
|
INFO = 1
|
|
A( 1, 1 ) = SMLNUM
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Factorize A using complete pivoting.
|
|
* Set pivots less than SMIN to SMIN.
|
|
*
|
|
DO 40 I = 1, N - 1
|
|
*
|
|
* Find max element in matrix A
|
|
*
|
|
XMAX = ZERO
|
|
DO 20 IP = I, N
|
|
DO 10 JP = I, N
|
|
IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
|
|
XMAX = ABS( A( IP, JP ) )
|
|
IPV = IP
|
|
JPV = JP
|
|
END IF
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
IF( I.EQ.1 )
|
|
$ SMIN = MAX( EPS*XMAX, SMLNUM )
|
|
*
|
|
* Swap rows
|
|
*
|
|
IF( IPV.NE.I )
|
|
$ CALL SSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
|
|
IPIV( I ) = IPV
|
|
*
|
|
* Swap columns
|
|
*
|
|
IF( JPV.NE.I )
|
|
$ CALL SSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
|
|
JPIV( I ) = JPV
|
|
*
|
|
* Check for singularity
|
|
*
|
|
IF( ABS( A( I, I ) ).LT.SMIN ) THEN
|
|
INFO = I
|
|
A( I, I ) = SMIN
|
|
END IF
|
|
DO 30 J = I + 1, N
|
|
A( J, I ) = A( J, I ) / A( I, I )
|
|
30 CONTINUE
|
|
CALL SGER( N-I, N-I, -ONE, A( I+1, I ), 1, A( I, I+1 ), LDA,
|
|
$ A( I+1, I+1 ), LDA )
|
|
40 CONTINUE
|
|
*
|
|
IF( ABS( A( N, N ) ).LT.SMIN ) THEN
|
|
INFO = N
|
|
A( N, N ) = SMIN
|
|
END IF
|
|
*
|
|
* Set last pivots to N
|
|
*
|
|
IPIV( N ) = N
|
|
JPIV( N ) = N
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGETC2
|
|
*
|
|
END
|
|
|