You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
584 lines
18 KiB
584 lines
18 KiB
*> \brief <b> SGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGGEV3 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev3.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev3.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev3.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
|
|
* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
|
|
* $ INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBVL, JOBVR
|
|
* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
|
* $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
|
|
* $ VR( LDVR, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B)
|
|
*> the generalized eigenvalues, and optionally, the left and/or right
|
|
*> generalized eigenvectors.
|
|
*>
|
|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
|
|
*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
|
|
*> singular. It is usually represented as the pair (alpha,beta), as
|
|
*> there is a reasonable interpretation for beta=0, and even for both
|
|
*> being zero.
|
|
*>
|
|
*> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
|
*> of (A,B) satisfies
|
|
*>
|
|
*> A * v(j) = lambda(j) * B * v(j).
|
|
*>
|
|
*> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
|
*> of (A,B) satisfies
|
|
*>
|
|
*> u(j)**H * A = lambda(j) * u(j)**H * B .
|
|
*>
|
|
*> where u(j)**H is the conjugate-transpose of u(j).
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBVL
|
|
*> \verbatim
|
|
*> JOBVL is CHARACTER*1
|
|
*> = 'N': do not compute the left generalized eigenvectors;
|
|
*> = 'V': compute the left generalized eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBVR
|
|
*> \verbatim
|
|
*> JOBVR is CHARACTER*1
|
|
*> = 'N': do not compute the right generalized eigenvectors;
|
|
*> = 'V': compute the right generalized eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A, B, VL, and VR. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA, N)
|
|
*> On entry, the matrix A in the pair (A,B).
|
|
*> On exit, A has been overwritten.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB, N)
|
|
*> On entry, the matrix B in the pair (A,B).
|
|
*> On exit, B has been overwritten.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHAR
|
|
*> \verbatim
|
|
*> ALPHAR is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHAI
|
|
*> \verbatim
|
|
*> ALPHAI is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL array, dimension (N)
|
|
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
|
|
*> be the generalized eigenvalues. If ALPHAI(j) is zero, then
|
|
*> the j-th eigenvalue is real; if positive, then the j-th and
|
|
*> (j+1)-st eigenvalues are a complex conjugate pair, with
|
|
*> ALPHAI(j+1) negative.
|
|
*>
|
|
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
|
|
*> may easily over- or underflow, and BETA(j) may even be zero.
|
|
*> Thus, the user should avoid naively computing the ratio
|
|
*> alpha/beta. However, ALPHAR and ALPHAI will be always less
|
|
*> than and usually comparable with norm(A) in magnitude, and
|
|
*> BETA always less than and usually comparable with norm(B).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VL
|
|
*> \verbatim
|
|
*> VL is REAL array, dimension (LDVL,N)
|
|
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
|
|
*> after another in the columns of VL, in the same order as
|
|
*> their eigenvalues. If the j-th eigenvalue is real, then
|
|
*> u(j) = VL(:,j), the j-th column of VL. If the j-th and
|
|
*> (j+1)-th eigenvalues form a complex conjugate pair, then
|
|
*> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
|
|
*> Each eigenvector is scaled so the largest component has
|
|
*> abs(real part)+abs(imag. part)=1.
|
|
*> Not referenced if JOBVL = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVL
|
|
*> \verbatim
|
|
*> LDVL is INTEGER
|
|
*> The leading dimension of the matrix VL. LDVL >= 1, and
|
|
*> if JOBVL = 'V', LDVL >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VR
|
|
*> \verbatim
|
|
*> VR is REAL array, dimension (LDVR,N)
|
|
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
|
|
*> after another in the columns of VR, in the same order as
|
|
*> their eigenvalues. If the j-th eigenvalue is real, then
|
|
*> v(j) = VR(:,j), the j-th column of VR. If the j-th and
|
|
*> (j+1)-th eigenvalues form a complex conjugate pair, then
|
|
*> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
|
|
*> Each eigenvector is scaled so the largest component has
|
|
*> abs(real part)+abs(imag. part)=1.
|
|
*> Not referenced if JOBVR = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVR
|
|
*> \verbatim
|
|
*> LDVR is INTEGER
|
|
*> The leading dimension of the matrix VR. LDVR >= 1, and
|
|
*> if JOBVR = 'V', LDVR >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> = 1,...,N:
|
|
*> The QZ iteration failed. No eigenvectors have been
|
|
*> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
|
|
*> should be correct for j=INFO+1,...,N.
|
|
*> > N: =N+1: other than QZ iteration failed in SLAQZ0.
|
|
*> =N+2: error return from STGEVC.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGEeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
|
|
$ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBVL, JOBVR
|
|
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
|
$ B( LDB, * ), BETA( * ), VL( LDVL, * ),
|
|
$ VR( LDVR, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
|
|
CHARACTER CHTEMP
|
|
INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
|
|
$ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT
|
|
REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
|
|
$ SMLNUM, TEMP
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL LDUMMA( 1 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHD3, SLAQZ0, SLACPY,
|
|
$ SLASCL, SLASET, SORGQR, SORMQR, STGEVC
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SLAMCH, SLANGE
|
|
EXTERNAL LSAME, SLAMCH, SLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode the input arguments
|
|
*
|
|
IF( LSAME( JOBVL, 'N' ) ) THEN
|
|
IJOBVL = 1
|
|
ILVL = .FALSE.
|
|
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
|
|
IJOBVL = 2
|
|
ILVL = .TRUE.
|
|
ELSE
|
|
IJOBVL = -1
|
|
ILVL = .FALSE.
|
|
END IF
|
|
*
|
|
IF( LSAME( JOBVR, 'N' ) ) THEN
|
|
IJOBVR = 1
|
|
ILVR = .FALSE.
|
|
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
|
|
IJOBVR = 2
|
|
ILVR = .TRUE.
|
|
ELSE
|
|
IJOBVR = -1
|
|
ILVR = .FALSE.
|
|
END IF
|
|
ILV = ILVL .OR. ILVR
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( IJOBVL.LE.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( IJOBVR.LE.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
|
|
INFO = -12
|
|
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
|
|
INFO = -14
|
|
ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -16
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
|
|
LWKOPT = MAX( 1, 8*N, 3*N+INT ( WORK( 1 ) ) )
|
|
CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
|
|
$ -1, IERR )
|
|
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
|
|
CALL SGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL, LDVL,
|
|
$ VR, LDVR, WORK, -1, IERR )
|
|
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
|
|
IF( ILVL ) THEN
|
|
CALL SORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
|
|
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
|
|
CALL SLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
|
|
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
|
|
$ WORK, -1, 0, IERR )
|
|
LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
|
|
ELSE
|
|
CALL SLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
|
|
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
|
|
$ WORK, -1, 0, IERR )
|
|
LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
|
|
END IF
|
|
WORK( 1 ) = REAL( LWKOPT )
|
|
*
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGGEV3 ', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
|
|
ILASCL = .FALSE.
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
ANRMTO = SMLNUM
|
|
ILASCL = .TRUE.
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
ANRMTO = BIGNUM
|
|
ILASCL = .TRUE.
|
|
END IF
|
|
IF( ILASCL )
|
|
$ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
|
|
*
|
|
* Scale B if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
|
|
ILBSCL = .FALSE.
|
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
|
BNRMTO = SMLNUM
|
|
ILBSCL = .TRUE.
|
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
|
BNRMTO = BIGNUM
|
|
ILBSCL = .TRUE.
|
|
END IF
|
|
IF( ILBSCL )
|
|
$ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
|
|
*
|
|
* Permute the matrices A, B to isolate eigenvalues if possible
|
|
*
|
|
ILEFT = 1
|
|
IRIGHT = N + 1
|
|
IWRK = IRIGHT + N
|
|
CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
|
|
$ WORK( IRIGHT ), WORK( IWRK ), IERR )
|
|
*
|
|
* Reduce B to triangular form (QR decomposition of B)
|
|
*
|
|
IROWS = IHI + 1 - ILO
|
|
IF( ILV ) THEN
|
|
ICOLS = N + 1 - ILO
|
|
ELSE
|
|
ICOLS = IROWS
|
|
END IF
|
|
ITAU = IWRK
|
|
IWRK = ITAU + IROWS
|
|
CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
|
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
*
|
|
* Apply the orthogonal transformation to matrix A
|
|
*
|
|
CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
|
|
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
|
|
$ LWORK+1-IWRK, IERR )
|
|
*
|
|
* Initialize VL
|
|
*
|
|
IF( ILVL ) THEN
|
|
CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
|
|
IF( IROWS.GT.1 ) THEN
|
|
CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
|
|
$ VL( ILO+1, ILO ), LDVL )
|
|
END IF
|
|
CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
|
|
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
END IF
|
|
*
|
|
* Initialize VR
|
|
*
|
|
IF( ILVR )
|
|
$ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
|
|
*
|
|
* Reduce to generalized Hessenberg form
|
|
*
|
|
IF( ILV ) THEN
|
|
*
|
|
* Eigenvectors requested -- work on whole matrix.
|
|
*
|
|
CALL SGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
|
|
$ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
ELSE
|
|
CALL SGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
|
|
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
|
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
|
END IF
|
|
*
|
|
* Perform QZ algorithm (Compute eigenvalues, and optionally, the
|
|
* Schur forms and Schur vectors)
|
|
*
|
|
IWRK = ITAU
|
|
IF( ILV ) THEN
|
|
CHTEMP = 'S'
|
|
ELSE
|
|
CHTEMP = 'E'
|
|
END IF
|
|
CALL SLAQZ0( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
|
|
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
|
|
$ WORK( IWRK ), LWORK+1-IWRK, 0, IERR )
|
|
IF( IERR.NE.0 ) THEN
|
|
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
|
|
INFO = IERR
|
|
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
|
|
INFO = IERR - N
|
|
ELSE
|
|
INFO = N + 1
|
|
END IF
|
|
GO TO 110
|
|
END IF
|
|
*
|
|
* Compute Eigenvectors
|
|
*
|
|
IF( ILV ) THEN
|
|
IF( ILVL ) THEN
|
|
IF( ILVR ) THEN
|
|
CHTEMP = 'B'
|
|
ELSE
|
|
CHTEMP = 'L'
|
|
END IF
|
|
ELSE
|
|
CHTEMP = 'R'
|
|
END IF
|
|
CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
|
|
$ VR, LDVR, N, IN, WORK( IWRK ), IERR )
|
|
IF( IERR.NE.0 ) THEN
|
|
INFO = N + 2
|
|
GO TO 110
|
|
END IF
|
|
*
|
|
* Undo balancing on VL and VR and normalization
|
|
*
|
|
IF( ILVL ) THEN
|
|
CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
|
|
$ WORK( IRIGHT ), N, VL, LDVL, IERR )
|
|
DO 50 JC = 1, N
|
|
IF( ALPHAI( JC ).LT.ZERO )
|
|
$ GO TO 50
|
|
TEMP = ZERO
|
|
IF( ALPHAI( JC ).EQ.ZERO ) THEN
|
|
DO 10 JR = 1, N
|
|
TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 JR = 1, N
|
|
TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
|
|
$ ABS( VL( JR, JC+1 ) ) )
|
|
20 CONTINUE
|
|
END IF
|
|
IF( TEMP.LT.SMLNUM )
|
|
$ GO TO 50
|
|
TEMP = ONE / TEMP
|
|
IF( ALPHAI( JC ).EQ.ZERO ) THEN
|
|
DO 30 JR = 1, N
|
|
VL( JR, JC ) = VL( JR, JC )*TEMP
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 JR = 1, N
|
|
VL( JR, JC ) = VL( JR, JC )*TEMP
|
|
VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
|
|
40 CONTINUE
|
|
END IF
|
|
50 CONTINUE
|
|
END IF
|
|
IF( ILVR ) THEN
|
|
CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
|
|
$ WORK( IRIGHT ), N, VR, LDVR, IERR )
|
|
DO 100 JC = 1, N
|
|
IF( ALPHAI( JC ).LT.ZERO )
|
|
$ GO TO 100
|
|
TEMP = ZERO
|
|
IF( ALPHAI( JC ).EQ.ZERO ) THEN
|
|
DO 60 JR = 1, N
|
|
TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 70 JR = 1, N
|
|
TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
|
|
$ ABS( VR( JR, JC+1 ) ) )
|
|
70 CONTINUE
|
|
END IF
|
|
IF( TEMP.LT.SMLNUM )
|
|
$ GO TO 100
|
|
TEMP = ONE / TEMP
|
|
IF( ALPHAI( JC ).EQ.ZERO ) THEN
|
|
DO 80 JR = 1, N
|
|
VR( JR, JC ) = VR( JR, JC )*TEMP
|
|
80 CONTINUE
|
|
ELSE
|
|
DO 90 JR = 1, N
|
|
VR( JR, JC ) = VR( JR, JC )*TEMP
|
|
VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
|
|
90 CONTINUE
|
|
END IF
|
|
100 CONTINUE
|
|
END IF
|
|
*
|
|
* End of eigenvector calculation
|
|
*
|
|
END IF
|
|
*
|
|
* Undo scaling if necessary
|
|
*
|
|
110 CONTINUE
|
|
*
|
|
IF( ILASCL ) THEN
|
|
CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
|
|
CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
|
|
END IF
|
|
*
|
|
IF( ILBSCL ) THEN
|
|
CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
|
|
END IF
|
|
*
|
|
WORK( 1 ) = REAL( LWKOPT )
|
|
RETURN
|
|
*
|
|
* End of SGGEV3
|
|
*
|
|
END
|
|
|