You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
9.4 KiB
330 lines
9.4 KiB
*> \brief <b> SGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SGTSV + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL B( LDB, * ), D( * ), DL( * ), DU( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGTSV solves the equation
|
|
*>
|
|
*> A*X = B,
|
|
*>
|
|
*> where A is an n by n tridiagonal matrix, by Gaussian elimination with
|
|
*> partial pivoting.
|
|
*>
|
|
*> Note that the equation A**T*X = B may be solved by interchanging the
|
|
*> order of the arguments DU and DL.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrix B. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DL
|
|
*> \verbatim
|
|
*> DL is REAL array, dimension (N-1)
|
|
*> On entry, DL must contain the (n-1) sub-diagonal elements of
|
|
*> A.
|
|
*>
|
|
*> On exit, DL is overwritten by the (n-2) elements of the
|
|
*> second super-diagonal of the upper triangular matrix U from
|
|
*> the LU factorization of A, in DL(1), ..., DL(n-2).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> On entry, D must contain the diagonal elements of A.
|
|
*>
|
|
*> On exit, D is overwritten by the n diagonal elements of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DU
|
|
*> \verbatim
|
|
*> DU is REAL array, dimension (N-1)
|
|
*> On entry, DU must contain the (n-1) super-diagonal elements
|
|
*> of A.
|
|
*>
|
|
*> On exit, DU is overwritten by the (n-1) elements of the first
|
|
*> super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB,NRHS)
|
|
*> On entry, the N by NRHS matrix of right hand side matrix B.
|
|
*> On exit, if INFO = 0, the N by NRHS solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
|
|
*> has not been computed. The factorization has not been
|
|
*> completed unless i = N.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realGTsolve
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL B( LDB, * ), D( * ), DL( * ), DU( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO
|
|
PARAMETER ( ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
REAL FACT, TEMP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( NRHS.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SGTSV ', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( NRHS.EQ.1 ) THEN
|
|
DO 10 I = 1, N - 2
|
|
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
|
|
*
|
|
* No row interchange required
|
|
*
|
|
IF( D( I ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
|
|
ELSE
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
DL( I ) = ZERO
|
|
ELSE
|
|
*
|
|
* Interchange rows I and I+1
|
|
*
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
TEMP = D( I+1 )
|
|
D( I+1 ) = DU( I ) - FACT*TEMP
|
|
DL( I ) = DU( I+1 )
|
|
DU( I+1 ) = -FACT*DL( I )
|
|
DU( I ) = TEMP
|
|
TEMP = B( I, 1 )
|
|
B( I, 1 ) = B( I+1, 1 )
|
|
B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
|
|
END IF
|
|
10 CONTINUE
|
|
IF( N.GT.1 ) THEN
|
|
I = N - 1
|
|
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
|
|
IF( D( I ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
|
|
ELSE
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
TEMP = D( I+1 )
|
|
D( I+1 ) = DU( I ) - FACT*TEMP
|
|
DU( I ) = TEMP
|
|
TEMP = B( I, 1 )
|
|
B( I, 1 ) = B( I+1, 1 )
|
|
B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
|
|
END IF
|
|
END IF
|
|
IF( D( N ).EQ.ZERO ) THEN
|
|
INFO = N
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
DO 40 I = 1, N - 2
|
|
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
|
|
*
|
|
* No row interchange required
|
|
*
|
|
IF( D( I ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
DO 20 J = 1, NRHS
|
|
B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
|
|
20 CONTINUE
|
|
ELSE
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
DL( I ) = ZERO
|
|
ELSE
|
|
*
|
|
* Interchange rows I and I+1
|
|
*
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
TEMP = D( I+1 )
|
|
D( I+1 ) = DU( I ) - FACT*TEMP
|
|
DL( I ) = DU( I+1 )
|
|
DU( I+1 ) = -FACT*DL( I )
|
|
DU( I ) = TEMP
|
|
DO 30 J = 1, NRHS
|
|
TEMP = B( I, J )
|
|
B( I, J ) = B( I+1, J )
|
|
B( I+1, J ) = TEMP - FACT*B( I+1, J )
|
|
30 CONTINUE
|
|
END IF
|
|
40 CONTINUE
|
|
IF( N.GT.1 ) THEN
|
|
I = N - 1
|
|
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
|
|
IF( D( I ).NE.ZERO ) THEN
|
|
FACT = DL( I ) / D( I )
|
|
D( I+1 ) = D( I+1 ) - FACT*DU( I )
|
|
DO 50 J = 1, NRHS
|
|
B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
|
|
50 CONTINUE
|
|
ELSE
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
ELSE
|
|
FACT = D( I ) / DL( I )
|
|
D( I ) = DL( I )
|
|
TEMP = D( I+1 )
|
|
D( I+1 ) = DU( I ) - FACT*TEMP
|
|
DU( I ) = TEMP
|
|
DO 60 J = 1, NRHS
|
|
TEMP = B( I, J )
|
|
B( I, J ) = B( I+1, J )
|
|
B( I+1, J ) = TEMP - FACT*B( I+1, J )
|
|
60 CONTINUE
|
|
END IF
|
|
END IF
|
|
IF( D( N ).EQ.ZERO ) THEN
|
|
INFO = N
|
|
RETURN
|
|
END IF
|
|
END IF
|
|
*
|
|
* Back solve with the matrix U from the factorization.
|
|
*
|
|
IF( NRHS.LE.2 ) THEN
|
|
J = 1
|
|
70 CONTINUE
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
IF( N.GT.1 )
|
|
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
|
|
DO 80 I = N - 2, 1, -1
|
|
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
|
|
$ B( I+2, J ) ) / D( I )
|
|
80 CONTINUE
|
|
IF( J.LT.NRHS ) THEN
|
|
J = J + 1
|
|
GO TO 70
|
|
END IF
|
|
ELSE
|
|
DO 100 J = 1, NRHS
|
|
B( N, J ) = B( N, J ) / D( N )
|
|
IF( N.GT.1 )
|
|
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
|
|
$ D( N-1 )
|
|
DO 90 I = N - 2, 1, -1
|
|
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
|
|
$ B( I+2, J ) ) / D( I )
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGTSV
|
|
*
|
|
END
|
|
|