You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
14 KiB
431 lines
14 KiB
*> \brief \b SLAED0 used by SSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLAED0 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed0.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed0.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed0.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
|
|
* WORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLAED0 computes all eigenvalues and corresponding eigenvectors of a
|
|
*> symmetric tridiagonal matrix using the divide and conquer method.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ICOMPQ
|
|
*> \verbatim
|
|
*> ICOMPQ is INTEGER
|
|
*> = 0: Compute eigenvalues only.
|
|
*> = 1: Compute eigenvectors of original dense symmetric matrix
|
|
*> also. On entry, Q contains the orthogonal matrix used
|
|
*> to reduce the original matrix to tridiagonal form.
|
|
*> = 2: Compute eigenvalues and eigenvectors of tridiagonal
|
|
*> matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QSIZ
|
|
*> \verbatim
|
|
*> QSIZ is INTEGER
|
|
*> The dimension of the orthogonal matrix used to reduce
|
|
*> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> On entry, the main diagonal of the tridiagonal matrix.
|
|
*> On exit, its eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N-1)
|
|
*> The off-diagonal elements of the tridiagonal matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is REAL array, dimension (LDQ, N)
|
|
*> On entry, Q must contain an N-by-N orthogonal matrix.
|
|
*> If ICOMPQ = 0 Q is not referenced.
|
|
*> If ICOMPQ = 1 On entry, Q is a subset of the columns of the
|
|
*> orthogonal matrix used to reduce the full
|
|
*> matrix to tridiagonal form corresponding to
|
|
*> the subset of the full matrix which is being
|
|
*> decomposed at this time.
|
|
*> If ICOMPQ = 2 On entry, Q will be the identity matrix.
|
|
*> On exit, Q contains the eigenvectors of the
|
|
*> tridiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. If eigenvectors are
|
|
*> desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] QSTORE
|
|
*> \verbatim
|
|
*> QSTORE is REAL array, dimension (LDQS, N)
|
|
*> Referenced only when ICOMPQ = 1. Used to store parts of
|
|
*> the eigenvector matrix when the updating matrix multiplies
|
|
*> take place.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQS
|
|
*> \verbatim
|
|
*> LDQS is INTEGER
|
|
*> The leading dimension of the array QSTORE. If ICOMPQ = 1,
|
|
*> then LDQS >= max(1,N). In any case, LDQS >= 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array,
|
|
*> If ICOMPQ = 0 or 1, the dimension of WORK must be at least
|
|
*> 1 + 3*N + 2*N*lg N + 3*N**2
|
|
*> ( lg( N ) = smallest integer k
|
|
*> such that 2^k >= N )
|
|
*> If ICOMPQ = 2, the dimension of WORK must be at least
|
|
*> 4*N + N**2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array,
|
|
*> If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
|
|
*> 6 + 6*N + 5*N*lg N.
|
|
*> ( lg( N ) = smallest integer k
|
|
*> such that 2^k >= N )
|
|
*> If ICOMPQ = 2, the dimension of IWORK must be at least
|
|
*> 3 + 5*N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: The algorithm failed to compute an eigenvalue while
|
|
*> working on the submatrix lying in rows and columns
|
|
*> INFO/(N+1) through mod(INFO,N+1).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
|
|
$ WORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.E0, ONE = 1.E0, TWO = 2.E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
|
|
$ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
|
|
$ J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
|
|
$ SPM2, SUBMAT, SUBPBS, TLVLS
|
|
REAL TEMP
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SGEMM, SLACPY, SLAED1, SLAED7, SSTEQR,
|
|
$ XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, INT, LOG, MAX, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
|
|
INFO = -1
|
|
ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SLAED0', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
SMLSIZ = ILAENV( 9, 'SLAED0', ' ', 0, 0, 0, 0 )
|
|
*
|
|
* Determine the size and placement of the submatrices, and save in
|
|
* the leading elements of IWORK.
|
|
*
|
|
IWORK( 1 ) = N
|
|
SUBPBS = 1
|
|
TLVLS = 0
|
|
10 CONTINUE
|
|
IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
|
|
DO 20 J = SUBPBS, 1, -1
|
|
IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
|
|
IWORK( 2*J-1 ) = IWORK( J ) / 2
|
|
20 CONTINUE
|
|
TLVLS = TLVLS + 1
|
|
SUBPBS = 2*SUBPBS
|
|
GO TO 10
|
|
END IF
|
|
DO 30 J = 2, SUBPBS
|
|
IWORK( J ) = IWORK( J ) + IWORK( J-1 )
|
|
30 CONTINUE
|
|
*
|
|
* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
|
|
* using rank-1 modifications (cuts).
|
|
*
|
|
SPM1 = SUBPBS - 1
|
|
DO 40 I = 1, SPM1
|
|
SUBMAT = IWORK( I ) + 1
|
|
SMM1 = SUBMAT - 1
|
|
D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
|
|
D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
|
|
40 CONTINUE
|
|
*
|
|
INDXQ = 4*N + 3
|
|
IF( ICOMPQ.NE.2 ) THEN
|
|
*
|
|
* Set up workspaces for eigenvalues only/accumulate new vectors
|
|
* routine
|
|
*
|
|
TEMP = LOG( REAL( N ) ) / LOG( TWO )
|
|
LGN = INT( TEMP )
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
IPRMPT = INDXQ + N + 1
|
|
IPERM = IPRMPT + N*LGN
|
|
IQPTR = IPERM + N*LGN
|
|
IGIVPT = IQPTR + N + 2
|
|
IGIVCL = IGIVPT + N*LGN
|
|
*
|
|
IGIVNM = 1
|
|
IQ = IGIVNM + 2*N*LGN
|
|
IWREM = IQ + N**2 + 1
|
|
*
|
|
* Initialize pointers
|
|
*
|
|
DO 50 I = 0, SUBPBS
|
|
IWORK( IPRMPT+I ) = 1
|
|
IWORK( IGIVPT+I ) = 1
|
|
50 CONTINUE
|
|
IWORK( IQPTR ) = 1
|
|
END IF
|
|
*
|
|
* Solve each submatrix eigenproblem at the bottom of the divide and
|
|
* conquer tree.
|
|
*
|
|
CURR = 0
|
|
DO 70 I = 0, SPM1
|
|
IF( I.EQ.0 ) THEN
|
|
SUBMAT = 1
|
|
MATSIZ = IWORK( 1 )
|
|
ELSE
|
|
SUBMAT = IWORK( I ) + 1
|
|
MATSIZ = IWORK( I+1 ) - IWORK( I )
|
|
END IF
|
|
IF( ICOMPQ.EQ.2 ) THEN
|
|
CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
|
|
$ Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 130
|
|
ELSE
|
|
CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
|
|
$ WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
|
|
$ INFO )
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 130
|
|
IF( ICOMPQ.EQ.1 ) THEN
|
|
CALL SGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE,
|
|
$ Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
|
|
$ CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
|
|
$ LDQS )
|
|
END IF
|
|
IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
|
|
CURR = CURR + 1
|
|
END IF
|
|
K = 1
|
|
DO 60 J = SUBMAT, IWORK( I+1 )
|
|
IWORK( INDXQ+J ) = K
|
|
K = K + 1
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
*
|
|
* Successively merge eigensystems of adjacent submatrices
|
|
* into eigensystem for the corresponding larger matrix.
|
|
*
|
|
* while ( SUBPBS > 1 )
|
|
*
|
|
CURLVL = 1
|
|
80 CONTINUE
|
|
IF( SUBPBS.GT.1 ) THEN
|
|
SPM2 = SUBPBS - 2
|
|
DO 90 I = 0, SPM2, 2
|
|
IF( I.EQ.0 ) THEN
|
|
SUBMAT = 1
|
|
MATSIZ = IWORK( 2 )
|
|
MSD2 = IWORK( 1 )
|
|
CURPRB = 0
|
|
ELSE
|
|
SUBMAT = IWORK( I ) + 1
|
|
MATSIZ = IWORK( I+2 ) - IWORK( I )
|
|
MSD2 = MATSIZ / 2
|
|
CURPRB = CURPRB + 1
|
|
END IF
|
|
*
|
|
* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
|
|
* into an eigensystem of size MATSIZ.
|
|
* SLAED1 is used only for the full eigensystem of a tridiagonal
|
|
* matrix.
|
|
* SLAED7 handles the cases in which eigenvalues only or eigenvalues
|
|
* and eigenvectors of a full symmetric matrix (which was reduced to
|
|
* tridiagonal form) are desired.
|
|
*
|
|
IF( ICOMPQ.EQ.2 ) THEN
|
|
CALL SLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
|
|
$ LDQ, IWORK( INDXQ+SUBMAT ),
|
|
$ E( SUBMAT+MSD2-1 ), MSD2, WORK,
|
|
$ IWORK( SUBPBS+1 ), INFO )
|
|
ELSE
|
|
CALL SLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
|
|
$ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
|
|
$ IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
|
|
$ MSD2, WORK( IQ ), IWORK( IQPTR ),
|
|
$ IWORK( IPRMPT ), IWORK( IPERM ),
|
|
$ IWORK( IGIVPT ), IWORK( IGIVCL ),
|
|
$ WORK( IGIVNM ), WORK( IWREM ),
|
|
$ IWORK( SUBPBS+1 ), INFO )
|
|
END IF
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 130
|
|
IWORK( I / 2+1 ) = IWORK( I+2 )
|
|
90 CONTINUE
|
|
SUBPBS = SUBPBS / 2
|
|
CURLVL = CURLVL + 1
|
|
GO TO 80
|
|
END IF
|
|
*
|
|
* end while
|
|
*
|
|
* Re-merge the eigenvalues/vectors which were deflated at the final
|
|
* merge step.
|
|
*
|
|
IF( ICOMPQ.EQ.1 ) THEN
|
|
DO 100 I = 1, N
|
|
J = IWORK( INDXQ+I )
|
|
WORK( I ) = D( J )
|
|
CALL SCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
|
|
100 CONTINUE
|
|
CALL SCOPY( N, WORK, 1, D, 1 )
|
|
ELSE IF( ICOMPQ.EQ.2 ) THEN
|
|
DO 110 I = 1, N
|
|
J = IWORK( INDXQ+I )
|
|
WORK( I ) = D( J )
|
|
CALL SCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
|
|
110 CONTINUE
|
|
CALL SCOPY( N, WORK, 1, D, 1 )
|
|
CALL SLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
|
|
ELSE
|
|
DO 120 I = 1, N
|
|
J = IWORK( INDXQ+I )
|
|
WORK( I ) = D( J )
|
|
120 CONTINUE
|
|
CALL SCOPY( N, WORK, 1, D, 1 )
|
|
END IF
|
|
GO TO 140
|
|
*
|
|
130 CONTINUE
|
|
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
|
|
*
|
|
140 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of SLAED0
|
|
*
|
|
END
|
|
|