You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
620 lines
20 KiB
620 lines
20 KiB
*> \brief \b SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLAHQR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahqr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahqr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahqr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
|
|
* ILOZ, IHIZ, Z, LDZ, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
|
* LOGICAL WANTT, WANTZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLAHQR is an auxiliary routine called by SHSEQR to update the
|
|
*> eigenvalues and Schur decomposition already computed by SHSEQR, by
|
|
*> dealing with the Hessenberg submatrix in rows and columns ILO to
|
|
*> IHI.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] WANTT
|
|
*> \verbatim
|
|
*> WANTT is LOGICAL
|
|
*> = .TRUE. : the full Schur form T is required;
|
|
*> = .FALSE.: only eigenvalues are required.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTZ
|
|
*> \verbatim
|
|
*> WANTZ is LOGICAL
|
|
*> = .TRUE. : the matrix of Schur vectors Z is required;
|
|
*> = .FALSE.: Schur vectors are not required.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix H. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*> It is assumed that H is already upper quasi-triangular in
|
|
*> rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
|
|
*> ILO = 1). SLAHQR works primarily with the Hessenberg
|
|
*> submatrix in rows and columns ILO to IHI, but applies
|
|
*> transformations to all of H if WANTT is .TRUE..
|
|
*> 1 <= ILO <= max(1,IHI); IHI <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] H
|
|
*> \verbatim
|
|
*> H is REAL array, dimension (LDH,N)
|
|
*> On entry, the upper Hessenberg matrix H.
|
|
*> On exit, if INFO is zero and if WANTT is .TRUE., H is upper
|
|
*> quasi-triangular in rows and columns ILO:IHI, with any
|
|
*> 2-by-2 diagonal blocks in standard form. If INFO is zero
|
|
*> and WANTT is .FALSE., the contents of H are unspecified on
|
|
*> exit. The output state of H if INFO is nonzero is given
|
|
*> below under the description of INFO.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDH
|
|
*> \verbatim
|
|
*> LDH is INTEGER
|
|
*> The leading dimension of the array H. LDH >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WR
|
|
*> \verbatim
|
|
*> WR is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WI
|
|
*> \verbatim
|
|
*> WI is REAL array, dimension (N)
|
|
*> The real and imaginary parts, respectively, of the computed
|
|
*> eigenvalues ILO to IHI are stored in the corresponding
|
|
*> elements of WR and WI. If two eigenvalues are computed as a
|
|
*> complex conjugate pair, they are stored in consecutive
|
|
*> elements of WR and WI, say the i-th and (i+1)th, with
|
|
*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
|
|
*> eigenvalues are stored in the same order as on the diagonal
|
|
*> of the Schur form returned in H, with WR(i) = H(i,i), and, if
|
|
*> H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
|
|
*> WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILOZ
|
|
*> \verbatim
|
|
*> ILOZ is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHIZ
|
|
*> \verbatim
|
|
*> IHIZ is INTEGER
|
|
*> Specify the rows of Z to which transformations must be
|
|
*> applied if WANTZ is .TRUE..
|
|
*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is REAL array, dimension (LDZ,N)
|
|
*> If WANTZ is .TRUE., on entry Z must contain the current
|
|
*> matrix Z of transformations accumulated by SHSEQR, and on
|
|
*> exit Z has been updated; transformations are applied only to
|
|
*> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
|
|
*> If WANTZ is .FALSE., Z is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> > 0: If INFO = i, SLAHQR failed to compute all the
|
|
*> eigenvalues ILO to IHI in a total of 30 iterations
|
|
*> per eigenvalue; elements i+1:ihi of WR and WI
|
|
*> contain those eigenvalues which have been
|
|
*> successfully computed.
|
|
*>
|
|
*> If INFO > 0 and WANTT is .FALSE., then on exit,
|
|
*> the remaining unconverged eigenvalues are the
|
|
*> eigenvalues of the upper Hessenberg matrix rows
|
|
*> and columns ILO through INFO of the final, output
|
|
*> value of H.
|
|
*>
|
|
*> If INFO > 0 and WANTT is .TRUE., then on exit
|
|
*> (*) (initial value of H)*U = U*(final value of H)
|
|
*> where U is an orthogonal matrix. The final
|
|
*> value of H is upper Hessenberg and triangular in
|
|
*> rows and columns INFO+1 through IHI.
|
|
*>
|
|
*> If INFO > 0 and WANTZ is .TRUE., then on exit
|
|
*> (final value of Z) = (initial value of Z)*U
|
|
*> where U is the orthogonal matrix in (*)
|
|
*> (regardless of the value of WANTT.)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHERauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> 02-96 Based on modifications by
|
|
*> David Day, Sandia National Laboratory, USA
|
|
*>
|
|
*> 12-04 Further modifications by
|
|
*> Ralph Byers, University of Kansas, USA
|
|
*> This is a modified version of SLAHQR from LAPACK version 3.0.
|
|
*> It is (1) more robust against overflow and underflow and
|
|
*> (2) adopts the more conservative Ahues & Tisseur stopping
|
|
*> criterion (LAWN 122, 1997).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
|
|
$ ILOZ, IHIZ, Z, LDZ, INFO )
|
|
IMPLICIT NONE
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
|
LOGICAL WANTT, WANTZ
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =========================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.0e0, ONE = 1.0e0, TWO = 2.0e0 )
|
|
REAL DAT1, DAT2
|
|
PARAMETER ( DAT1 = 3.0e0 / 4.0e0, DAT2 = -0.4375e0 )
|
|
INTEGER KEXSH
|
|
PARAMETER ( KEXSH = 10 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
REAL AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
|
|
$ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
|
|
$ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
|
|
$ ULP, V2, V3
|
|
INTEGER I, I1, I2, ITS, ITMAX, J, K, L, M, NH, NR, NZ,
|
|
$ KDEFL
|
|
* ..
|
|
* .. Local Arrays ..
|
|
REAL V( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SLANV2, SLARFG, SROT
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
IF( ILO.EQ.IHI ) THEN
|
|
WR( ILO ) = H( ILO, ILO )
|
|
WI( ILO ) = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* ==== clear out the trash ====
|
|
DO 10 J = ILO, IHI - 3
|
|
H( J+2, J ) = ZERO
|
|
H( J+3, J ) = ZERO
|
|
10 CONTINUE
|
|
IF( ILO.LE.IHI-2 )
|
|
$ H( IHI, IHI-2 ) = ZERO
|
|
*
|
|
NH = IHI - ILO + 1
|
|
NZ = IHIZ - ILOZ + 1
|
|
*
|
|
* Set machine-dependent constants for the stopping criterion.
|
|
*
|
|
SAFMIN = SLAMCH( 'SAFE MINIMUM' )
|
|
SAFMAX = ONE / SAFMIN
|
|
ULP = SLAMCH( 'PRECISION' )
|
|
SMLNUM = SAFMIN*( REAL( NH ) / ULP )
|
|
*
|
|
* I1 and I2 are the indices of the first row and last column of H
|
|
* to which transformations must be applied. If eigenvalues only are
|
|
* being computed, I1 and I2 are set inside the main loop.
|
|
*
|
|
IF( WANTT ) THEN
|
|
I1 = 1
|
|
I2 = N
|
|
END IF
|
|
*
|
|
* ITMAX is the total number of QR iterations allowed.
|
|
*
|
|
ITMAX = 30 * MAX( 10, NH )
|
|
*
|
|
* KDEFL counts the number of iterations since a deflation
|
|
*
|
|
KDEFL = 0
|
|
*
|
|
* The main loop begins here. I is the loop index and decreases from
|
|
* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
|
|
* with the active submatrix in rows and columns L to I.
|
|
* Eigenvalues I+1 to IHI have already converged. Either L = ILO or
|
|
* H(L,L-1) is negligible so that the matrix splits.
|
|
*
|
|
I = IHI
|
|
20 CONTINUE
|
|
L = ILO
|
|
IF( I.LT.ILO )
|
|
$ GO TO 160
|
|
*
|
|
* Perform QR iterations on rows and columns ILO to I until a
|
|
* submatrix of order 1 or 2 splits off at the bottom because a
|
|
* subdiagonal element has become negligible.
|
|
*
|
|
DO 140 ITS = 0, ITMAX
|
|
*
|
|
* Look for a single small subdiagonal element.
|
|
*
|
|
DO 30 K = I, L + 1, -1
|
|
IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
|
|
$ GO TO 40
|
|
TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
|
|
IF( TST.EQ.ZERO ) THEN
|
|
IF( K-2.GE.ILO )
|
|
$ TST = TST + ABS( H( K-1, K-2 ) )
|
|
IF( K+1.LE.IHI )
|
|
$ TST = TST + ABS( H( K+1, K ) )
|
|
END IF
|
|
* ==== The following is a conservative small subdiagonal
|
|
* . deflation criterion due to Ahues & Tisseur (LAWN 122,
|
|
* . 1997). It has better mathematical foundation and
|
|
* . improves accuracy in some cases. ====
|
|
IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
|
|
AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
|
|
BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
|
|
AA = MAX( ABS( H( K, K ) ),
|
|
$ ABS( H( K-1, K-1 )-H( K, K ) ) )
|
|
BB = MIN( ABS( H( K, K ) ),
|
|
$ ABS( H( K-1, K-1 )-H( K, K ) ) )
|
|
S = AA + AB
|
|
IF( BA*( AB / S ).LE.MAX( SMLNUM,
|
|
$ ULP*( BB*( AA / S ) ) ) )GO TO 40
|
|
END IF
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
L = K
|
|
IF( L.GT.ILO ) THEN
|
|
*
|
|
* H(L,L-1) is negligible
|
|
*
|
|
H( L, L-1 ) = ZERO
|
|
END IF
|
|
*
|
|
* Exit from loop if a submatrix of order 1 or 2 has split off.
|
|
*
|
|
IF( L.GE.I-1 )
|
|
$ GO TO 150
|
|
KDEFL = KDEFL + 1
|
|
*
|
|
* Now the active submatrix is in rows and columns L to I. If
|
|
* eigenvalues only are being computed, only the active submatrix
|
|
* need be transformed.
|
|
*
|
|
IF( .NOT.WANTT ) THEN
|
|
I1 = L
|
|
I2 = I
|
|
END IF
|
|
*
|
|
IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
|
|
*
|
|
* Exceptional shift.
|
|
*
|
|
S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
|
|
H11 = DAT1*S + H( I, I )
|
|
H12 = DAT2*S
|
|
H21 = S
|
|
H22 = H11
|
|
ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
|
|
*
|
|
* Exceptional shift.
|
|
*
|
|
S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
|
|
H11 = DAT1*S + H( L, L )
|
|
H12 = DAT2*S
|
|
H21 = S
|
|
H22 = H11
|
|
ELSE
|
|
*
|
|
* Prepare to use Francis' double shift
|
|
* (i.e. 2nd degree generalized Rayleigh quotient)
|
|
*
|
|
H11 = H( I-1, I-1 )
|
|
H21 = H( I, I-1 )
|
|
H12 = H( I-1, I )
|
|
H22 = H( I, I )
|
|
END IF
|
|
S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
|
|
IF( S.EQ.ZERO ) THEN
|
|
RT1R = ZERO
|
|
RT1I = ZERO
|
|
RT2R = ZERO
|
|
RT2I = ZERO
|
|
ELSE
|
|
H11 = H11 / S
|
|
H21 = H21 / S
|
|
H12 = H12 / S
|
|
H22 = H22 / S
|
|
TR = ( H11+H22 ) / TWO
|
|
DET = ( H11-TR )*( H22-TR ) - H12*H21
|
|
RTDISC = SQRT( ABS( DET ) )
|
|
IF( DET.GE.ZERO ) THEN
|
|
*
|
|
* ==== complex conjugate shifts ====
|
|
*
|
|
RT1R = TR*S
|
|
RT2R = RT1R
|
|
RT1I = RTDISC*S
|
|
RT2I = -RT1I
|
|
ELSE
|
|
*
|
|
* ==== real shifts (use only one of them) ====
|
|
*
|
|
RT1R = TR + RTDISC
|
|
RT2R = TR - RTDISC
|
|
IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
|
|
RT1R = RT1R*S
|
|
RT2R = RT1R
|
|
ELSE
|
|
RT2R = RT2R*S
|
|
RT1R = RT2R
|
|
END IF
|
|
RT1I = ZERO
|
|
RT2I = ZERO
|
|
END IF
|
|
END IF
|
|
*
|
|
* Look for two consecutive small subdiagonal elements.
|
|
*
|
|
DO 50 M = I - 2, L, -1
|
|
* Determine the effect of starting the double-shift QR
|
|
* iteration at row M, and see if this would make H(M,M-1)
|
|
* negligible. (The following uses scaling to avoid
|
|
* overflows and most underflows.)
|
|
*
|
|
H21S = H( M+1, M )
|
|
S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
|
|
H21S = H( M+1, M ) / S
|
|
V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
|
|
$ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
|
|
V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
|
|
V( 3 ) = H21S*H( M+2, M+1 )
|
|
S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
|
|
V( 1 ) = V( 1 ) / S
|
|
V( 2 ) = V( 2 ) / S
|
|
V( 3 ) = V( 3 ) / S
|
|
IF( M.EQ.L )
|
|
$ GO TO 60
|
|
IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
|
|
$ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
|
|
$ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
* Double-shift QR step
|
|
*
|
|
DO 130 K = M, I - 1
|
|
*
|
|
* The first iteration of this loop determines a reflection G
|
|
* from the vector V and applies it from left and right to H,
|
|
* thus creating a nonzero bulge below the subdiagonal.
|
|
*
|
|
* Each subsequent iteration determines a reflection G to
|
|
* restore the Hessenberg form in the (K-1)th column, and thus
|
|
* chases the bulge one step toward the bottom of the active
|
|
* submatrix. NR is the order of G.
|
|
*
|
|
NR = MIN( 3, I-K+1 )
|
|
IF( K.GT.M )
|
|
$ CALL SCOPY( NR, H( K, K-1 ), 1, V, 1 )
|
|
CALL SLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
|
|
IF( K.GT.M ) THEN
|
|
H( K, K-1 ) = V( 1 )
|
|
H( K+1, K-1 ) = ZERO
|
|
IF( K.LT.I-1 )
|
|
$ H( K+2, K-1 ) = ZERO
|
|
ELSE IF( M.GT.L ) THEN
|
|
* ==== Use the following instead of
|
|
* . H( K, K-1 ) = -H( K, K-1 ) to
|
|
* . avoid a bug when v(2) and v(3)
|
|
* . underflow. ====
|
|
H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
|
|
END IF
|
|
V2 = V( 2 )
|
|
T2 = T1*V2
|
|
IF( NR.EQ.3 ) THEN
|
|
V3 = V( 3 )
|
|
T3 = T1*V3
|
|
*
|
|
* Apply G from the left to transform the rows of the matrix
|
|
* in columns K to I2.
|
|
*
|
|
DO 70 J = K, I2
|
|
SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
|
|
H( K, J ) = H( K, J ) - SUM*T1
|
|
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
|
H( K+2, J ) = H( K+2, J ) - SUM*T3
|
|
70 CONTINUE
|
|
*
|
|
* Apply G from the right to transform the columns of the
|
|
* matrix in rows I1 to min(K+3,I).
|
|
*
|
|
DO 80 J = I1, MIN( K+3, I )
|
|
SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
|
|
H( J, K ) = H( J, K ) - SUM*T1
|
|
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
|
H( J, K+2 ) = H( J, K+2 ) - SUM*T3
|
|
80 CONTINUE
|
|
*
|
|
IF( WANTZ ) THEN
|
|
*
|
|
* Accumulate transformations in the matrix Z
|
|
*
|
|
DO 90 J = ILOZ, IHIZ
|
|
SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
|
|
Z( J, K ) = Z( J, K ) - SUM*T1
|
|
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
|
Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
|
|
90 CONTINUE
|
|
END IF
|
|
ELSE IF( NR.EQ.2 ) THEN
|
|
*
|
|
* Apply G from the left to transform the rows of the matrix
|
|
* in columns K to I2.
|
|
*
|
|
DO 100 J = K, I2
|
|
SUM = H( K, J ) + V2*H( K+1, J )
|
|
H( K, J ) = H( K, J ) - SUM*T1
|
|
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
|
100 CONTINUE
|
|
*
|
|
* Apply G from the right to transform the columns of the
|
|
* matrix in rows I1 to min(K+3,I).
|
|
*
|
|
DO 110 J = I1, I
|
|
SUM = H( J, K ) + V2*H( J, K+1 )
|
|
H( J, K ) = H( J, K ) - SUM*T1
|
|
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
|
110 CONTINUE
|
|
*
|
|
IF( WANTZ ) THEN
|
|
*
|
|
* Accumulate transformations in the matrix Z
|
|
*
|
|
DO 120 J = ILOZ, IHIZ
|
|
SUM = Z( J, K ) + V2*Z( J, K+1 )
|
|
Z( J, K ) = Z( J, K ) - SUM*T1
|
|
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
130 CONTINUE
|
|
*
|
|
140 CONTINUE
|
|
*
|
|
* Failure to converge in remaining number of iterations
|
|
*
|
|
INFO = I
|
|
RETURN
|
|
*
|
|
150 CONTINUE
|
|
*
|
|
IF( L.EQ.I ) THEN
|
|
*
|
|
* H(I,I-1) is negligible: one eigenvalue has converged.
|
|
*
|
|
WR( I ) = H( I, I )
|
|
WI( I ) = ZERO
|
|
ELSE IF( L.EQ.I-1 ) THEN
|
|
*
|
|
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
|
|
*
|
|
* Transform the 2-by-2 submatrix to standard Schur form,
|
|
* and compute and store the eigenvalues.
|
|
*
|
|
CALL SLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
|
|
$ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
|
|
$ CS, SN )
|
|
*
|
|
IF( WANTT ) THEN
|
|
*
|
|
* Apply the transformation to the rest of H.
|
|
*
|
|
IF( I2.GT.I )
|
|
$ CALL SROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
|
|
$ CS, SN )
|
|
CALL SROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
|
|
END IF
|
|
IF( WANTZ ) THEN
|
|
*
|
|
* Apply the transformation to Z.
|
|
*
|
|
CALL SROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
|
|
END IF
|
|
END IF
|
|
* reset deflation counter
|
|
KDEFL = 0
|
|
*
|
|
* return to start of the main loop with new value of I.
|
|
*
|
|
I = L - 1
|
|
GO TO 20
|
|
*
|
|
160 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of SLAHQR
|
|
*
|
|
END
|
|
|