You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
7.4 KiB
259 lines
7.4 KiB
*> \brief \b SLAQP2 computes a QR factorization with column pivoting of the matrix block.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLAQP2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqp2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqp2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqp2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
|
|
* WORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, M, N, OFFSET
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER JPVT( * )
|
|
* REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLAQP2 computes a QR factorization with column pivoting of
|
|
*> the block A(OFFSET+1:M,1:N).
|
|
*> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] OFFSET
|
|
*> \verbatim
|
|
*> OFFSET is INTEGER
|
|
*> The number of rows of the matrix A that must be pivoted
|
|
*> but no factorized. OFFSET >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
|
|
*> the triangular factor obtained; the elements in block
|
|
*> A(OFFSET+1:M,1:N) below the diagonal, together with the
|
|
*> array TAU, represent the orthogonal matrix Q as a product of
|
|
*> elementary reflectors. Block A(1:OFFSET,1:N) has been
|
|
*> accordingly pivoted, but no factorized.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] JPVT
|
|
*> \verbatim
|
|
*> JPVT is INTEGER array, dimension (N)
|
|
*> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
|
|
*> to the front of A*P (a leading column); if JPVT(i) = 0,
|
|
*> the i-th column of A is a free column.
|
|
*> On exit, if JPVT(i) = k, then the i-th column of A*P
|
|
*> was the k-th column of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] VN1
|
|
*> \verbatim
|
|
*> VN1 is REAL array, dimension (N)
|
|
*> The vector with the partial column norms.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] VN2
|
|
*> \verbatim
|
|
*> VN2 is REAL array, dimension (N)
|
|
*> The vector with the exact column norms.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
|
|
*> X. Sun, Computer Science Dept., Duke University, USA
|
|
*> \n
|
|
*> Partial column norm updating strategy modified on April 2011
|
|
*> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
|
|
*> University of Zagreb, Croatia.
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> LAPACK Working Note 176
|
|
*
|
|
*> \htmlonly
|
|
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
|
|
$ WORK )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, M, N, OFFSET
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER JPVT( * )
|
|
REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, ITEMP, J, MN, OFFPI, PVT
|
|
REAL AII, TEMP, TEMP2, TOL3Z
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLARF, SLARFG, SSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
REAL SLAMCH, SNRM2
|
|
EXTERNAL ISAMAX, SLAMCH, SNRM2
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
MN = MIN( M-OFFSET, N )
|
|
TOL3Z = SQRT(SLAMCH('Epsilon'))
|
|
*
|
|
* Compute factorization.
|
|
*
|
|
DO 20 I = 1, MN
|
|
*
|
|
OFFPI = OFFSET + I
|
|
*
|
|
* Determine ith pivot column and swap if necessary.
|
|
*
|
|
PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
|
|
*
|
|
IF( PVT.NE.I ) THEN
|
|
CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
|
|
ITEMP = JPVT( PVT )
|
|
JPVT( PVT ) = JPVT( I )
|
|
JPVT( I ) = ITEMP
|
|
VN1( PVT ) = VN1( I )
|
|
VN2( PVT ) = VN2( I )
|
|
END IF
|
|
*
|
|
* Generate elementary reflector H(i).
|
|
*
|
|
IF( OFFPI.LT.M ) THEN
|
|
CALL SLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
|
|
$ TAU( I ) )
|
|
ELSE
|
|
CALL SLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
|
|
END IF
|
|
*
|
|
IF( I.LT.N ) THEN
|
|
*
|
|
* Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
|
|
*
|
|
AII = A( OFFPI, I )
|
|
A( OFFPI, I ) = ONE
|
|
CALL SLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
|
|
$ TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
|
|
A( OFFPI, I ) = AII
|
|
END IF
|
|
*
|
|
* Update partial column norms.
|
|
*
|
|
DO 10 J = I + 1, N
|
|
IF( VN1( J ).NE.ZERO ) THEN
|
|
*
|
|
* NOTE: The following 4 lines follow from the analysis in
|
|
* Lapack Working Note 176.
|
|
*
|
|
TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
|
|
TEMP = MAX( TEMP, ZERO )
|
|
TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
|
|
IF( TEMP2 .LE. TOL3Z ) THEN
|
|
IF( OFFPI.LT.M ) THEN
|
|
VN1( J ) = SNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
|
|
VN2( J ) = VN1( J )
|
|
ELSE
|
|
VN1( J ) = ZERO
|
|
VN2( J ) = ZERO
|
|
END IF
|
|
ELSE
|
|
VN1( J ) = VN1( J )*SQRT( TEMP )
|
|
END IF
|
|
END IF
|
|
10 CONTINUE
|
|
*
|
|
20 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SLAQP2
|
|
*
|
|
END
|
|
|