You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
6.3 KiB
248 lines
6.3 KiB
*> \brief \b SLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLARRC + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrc.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrc.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrc.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
|
|
* EIGCNT, LCNT, RCNT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBT
|
|
* INTEGER EIGCNT, INFO, LCNT, N, RCNT
|
|
* REAL PIVMIN, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL D( * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Find the number of eigenvalues of the symmetric tridiagonal matrix T
|
|
*> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
|
|
*> if JOBT = 'L'.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBT
|
|
*> \verbatim
|
|
*> JOBT is CHARACTER*1
|
|
*> = 'T': Compute Sturm count for matrix T.
|
|
*> = 'L': Compute Sturm count for matrix L D L^T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix. N > 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is REAL
|
|
*> The lower bound for the eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is REAL
|
|
*> The upper bound for the eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
|
|
*> JOBT = 'L': The N diagonal elements of the diagonal matrix D.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N)
|
|
*> JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
|
|
*> JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIVMIN
|
|
*> \verbatim
|
|
*> PIVMIN is REAL
|
|
*> The minimum pivot in the Sturm sequence for T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] EIGCNT
|
|
*> \verbatim
|
|
*> EIGCNT is INTEGER
|
|
*> The number of eigenvalues of the symmetric tridiagonal matrix T
|
|
*> that are in the interval (VL,VU]
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] LCNT
|
|
*> \verbatim
|
|
*> LCNT is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCNT
|
|
*> \verbatim
|
|
*> RCNT is INTEGER
|
|
*> The left and right negcounts of the interval.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
|
*> Osni Marques, LBNL/NERSC, USA \n
|
|
*> Christof Voemel, University of California, Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
|
|
$ EIGCNT, LCNT, RCNT, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBT
|
|
INTEGER EIGCNT, INFO, LCNT, N, RCNT
|
|
REAL PIVMIN, VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL D( * ), E( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO
|
|
PARAMETER ( ZERO = 0.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
LOGICAL MATT
|
|
REAL LPIVOT, RPIVOT, SL, SU, TMP, TMP2
|
|
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
LCNT = 0
|
|
RCNT = 0
|
|
EIGCNT = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
MATT = LSAME( JOBT, 'T' )
|
|
|
|
|
|
IF (MATT) THEN
|
|
* Sturm sequence count on T
|
|
LPIVOT = D( 1 ) - VL
|
|
RPIVOT = D( 1 ) - VU
|
|
IF( LPIVOT.LE.ZERO ) THEN
|
|
LCNT = LCNT + 1
|
|
ENDIF
|
|
IF( RPIVOT.LE.ZERO ) THEN
|
|
RCNT = RCNT + 1
|
|
ENDIF
|
|
DO 10 I = 1, N-1
|
|
TMP = E(I)**2
|
|
LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
|
|
RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
|
|
IF( LPIVOT.LE.ZERO ) THEN
|
|
LCNT = LCNT + 1
|
|
ENDIF
|
|
IF( RPIVOT.LE.ZERO ) THEN
|
|
RCNT = RCNT + 1
|
|
ENDIF
|
|
10 CONTINUE
|
|
ELSE
|
|
* Sturm sequence count on L D L^T
|
|
SL = -VL
|
|
SU = -VU
|
|
DO 20 I = 1, N - 1
|
|
LPIVOT = D( I ) + SL
|
|
RPIVOT = D( I ) + SU
|
|
IF( LPIVOT.LE.ZERO ) THEN
|
|
LCNT = LCNT + 1
|
|
ENDIF
|
|
IF( RPIVOT.LE.ZERO ) THEN
|
|
RCNT = RCNT + 1
|
|
ENDIF
|
|
TMP = E(I) * D(I) * E(I)
|
|
*
|
|
TMP2 = TMP / LPIVOT
|
|
IF( TMP2.EQ.ZERO ) THEN
|
|
SL = TMP - VL
|
|
ELSE
|
|
SL = SL*TMP2 - VL
|
|
END IF
|
|
*
|
|
TMP2 = TMP / RPIVOT
|
|
IF( TMP2.EQ.ZERO ) THEN
|
|
SU = TMP - VU
|
|
ELSE
|
|
SU = SU*TMP2 - VU
|
|
END IF
|
|
20 CONTINUE
|
|
LPIVOT = D( N ) + SL
|
|
RPIVOT = D( N ) + SU
|
|
IF( LPIVOT.LE.ZERO ) THEN
|
|
LCNT = LCNT + 1
|
|
ENDIF
|
|
IF( RPIVOT.LE.ZERO ) THEN
|
|
RCNT = RCNT + 1
|
|
ENDIF
|
|
ENDIF
|
|
EIGCNT = RCNT - LCNT
|
|
|
|
RETURN
|
|
*
|
|
* End of SLARRC
|
|
*
|
|
END
|
|
|