You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
8.8 KiB
315 lines
8.8 KiB
*> \brief \b SLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SLASD0 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd0.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd0.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd0.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
|
|
* WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Using a divide and conquer approach, SLASD0 computes the singular
|
|
*> value decomposition (SVD) of a real upper bidiagonal N-by-M
|
|
*> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
|
|
*> The algorithm computes orthogonal matrices U and VT such that
|
|
*> B = U * S * VT. The singular values S are overwritten on D.
|
|
*>
|
|
*> A related subroutine, SLASDA, computes only the singular values,
|
|
*> and optionally, the singular vectors in compact form.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, the row dimension of the upper bidiagonal matrix.
|
|
*> This is also the dimension of the main diagonal array D.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SQRE
|
|
*> \verbatim
|
|
*> SQRE is INTEGER
|
|
*> Specifies the column dimension of the bidiagonal matrix.
|
|
*> = 0: The bidiagonal matrix has column dimension M = N;
|
|
*> = 1: The bidiagonal matrix has column dimension M = N+1;
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> On entry D contains the main diagonal of the bidiagonal
|
|
*> matrix.
|
|
*> On exit D, if INFO = 0, contains its singular values.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (M-1)
|
|
*> Contains the subdiagonal entries of the bidiagonal matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] U
|
|
*> \verbatim
|
|
*> U is REAL array, dimension (LDU, N)
|
|
*> On exit, U contains the left singular vectors,
|
|
*> if U passed in as (N, N) Identity.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> On entry, leading dimension of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] VT
|
|
*> \verbatim
|
|
*> VT is REAL array, dimension (LDVT, M)
|
|
*> On exit, VT**T contains the right singular vectors,
|
|
*> if VT passed in as (M, M) Identity.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVT
|
|
*> \verbatim
|
|
*> LDVT is INTEGER
|
|
*> On entry, leading dimension of VT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SMLSIZ
|
|
*> \verbatim
|
|
*> SMLSIZ is INTEGER
|
|
*> On entry, maximum size of the subproblems at the
|
|
*> bottom of the computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (8*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (3*M**2+2*M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = 1, a singular value did not converge
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
|
*> California at Berkeley, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
|
|
$ WORK, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
|
|
$ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
|
|
$ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
|
|
REAL ALPHA, BETA
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLASD1, SLASDQ, SLASDT, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
|
|
INFO = -2
|
|
END IF
|
|
*
|
|
M = N + SQRE
|
|
*
|
|
IF( LDU.LT.N ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDVT.LT.M ) THEN
|
|
INFO = -8
|
|
ELSE IF( SMLSIZ.LT.3 ) THEN
|
|
INFO = -9
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SLASD0', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* If the input matrix is too small, call SLASDQ to find the SVD.
|
|
*
|
|
IF( N.LE.SMLSIZ ) THEN
|
|
CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
|
|
$ LDU, WORK, INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Set up the computation tree.
|
|
*
|
|
INODE = 1
|
|
NDIML = INODE + N
|
|
NDIMR = NDIML + N
|
|
IDXQ = NDIMR + N
|
|
IWK = IDXQ + N
|
|
CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
|
|
$ IWORK( NDIMR ), SMLSIZ )
|
|
*
|
|
* For the nodes on bottom level of the tree, solve
|
|
* their subproblems by SLASDQ.
|
|
*
|
|
NDB1 = ( ND+1 ) / 2
|
|
NCC = 0
|
|
DO 30 I = NDB1, ND
|
|
*
|
|
* IC : center row of each node
|
|
* NL : number of rows of left subproblem
|
|
* NR : number of rows of right subproblem
|
|
* NLF: starting row of the left subproblem
|
|
* NRF: starting row of the right subproblem
|
|
*
|
|
I1 = I - 1
|
|
IC = IWORK( INODE+I1 )
|
|
NL = IWORK( NDIML+I1 )
|
|
NLP1 = NL + 1
|
|
NR = IWORK( NDIMR+I1 )
|
|
NRP1 = NR + 1
|
|
NLF = IC - NL
|
|
NRF = IC + 1
|
|
SQREI = 1
|
|
CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
|
|
$ VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
|
|
$ U( NLF, NLF ), LDU, WORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
ITEMP = IDXQ + NLF - 2
|
|
DO 10 J = 1, NL
|
|
IWORK( ITEMP+J ) = J
|
|
10 CONTINUE
|
|
IF( I.EQ.ND ) THEN
|
|
SQREI = SQRE
|
|
ELSE
|
|
SQREI = 1
|
|
END IF
|
|
NRP1 = NR + SQREI
|
|
CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
|
|
$ VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
|
|
$ U( NRF, NRF ), LDU, WORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
ITEMP = IDXQ + IC
|
|
DO 20 J = 1, NR
|
|
IWORK( ITEMP+J-1 ) = J
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
* Now conquer each subproblem bottom-up.
|
|
*
|
|
DO 50 LVL = NLVL, 1, -1
|
|
*
|
|
* Find the first node LF and last node LL on the
|
|
* current level LVL.
|
|
*
|
|
IF( LVL.EQ.1 ) THEN
|
|
LF = 1
|
|
LL = 1
|
|
ELSE
|
|
LF = 2**( LVL-1 )
|
|
LL = 2*LF - 1
|
|
END IF
|
|
DO 40 I = LF, LL
|
|
IM1 = I - 1
|
|
IC = IWORK( INODE+IM1 )
|
|
NL = IWORK( NDIML+IM1 )
|
|
NR = IWORK( NDIMR+IM1 )
|
|
NLF = IC - NL
|
|
IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
|
|
SQREI = SQRE
|
|
ELSE
|
|
SQREI = 1
|
|
END IF
|
|
IDXQC = IDXQ + NLF - 1
|
|
ALPHA = D( IC )
|
|
BETA = E( IC )
|
|
CALL SLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
|
|
$ U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
|
|
$ IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
|
|
*
|
|
* Report the possible convergence failure.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SLASD0
|
|
*
|
|
END
|
|
|