You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
7.0 KiB
253 lines
7.0 KiB
!> \brief \b SLASSQ updates a sum of squares represented in scaled form.
|
|
!
|
|
! =========== DOCUMENTATION ===========
|
|
!
|
|
! Online html documentation available at
|
|
! http://www.netlib.org/lapack/explore-html/
|
|
!
|
|
!> \htmlonly
|
|
!> Download SLASSQ + dependencies
|
|
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slassq.f90">
|
|
!> [TGZ]</a>
|
|
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slassq.f90">
|
|
!> [ZIP]</a>
|
|
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slassq.f90">
|
|
!> [TXT]</a>
|
|
!> \endhtmlonly
|
|
!
|
|
! Definition:
|
|
! ===========
|
|
!
|
|
! SUBROUTINE SLASSQ( N, X, INCX, SCALE, SUMSQ )
|
|
!
|
|
! .. Scalar Arguments ..
|
|
! INTEGER INCX, N
|
|
! REAL SCALE, SUMSQ
|
|
! ..
|
|
! .. Array Arguments ..
|
|
! REAL X( * )
|
|
! ..
|
|
!
|
|
!
|
|
!> \par Purpose:
|
|
! =============
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> SLASSQ returns the values scl and smsq such that
|
|
!>
|
|
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
|
!>
|
|
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
|
!> assumed to be non-negative.
|
|
!>
|
|
!> scale and sumsq must be supplied in SCALE and SUMSQ and
|
|
!> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
|
!>
|
|
!> If scale * sqrt( sumsq ) > tbig then
|
|
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
|
|
!> and if 0 < scale * sqrt( sumsq ) < tsml then
|
|
!> we require: scale <= sqrt( HUGE ) / ssml on entry,
|
|
!> where
|
|
!> tbig -- upper threshold for values whose square is representable;
|
|
!> sbig -- scaling constant for big numbers; \see la_constants.f90
|
|
!> tsml -- lower threshold for values whose square is representable;
|
|
!> ssml -- scaling constant for small numbers; \see la_constants.f90
|
|
!> and
|
|
!> TINY*EPS -- tiniest representable number;
|
|
!> HUGE -- biggest representable number.
|
|
!>
|
|
!> \endverbatim
|
|
!
|
|
! Arguments:
|
|
! ==========
|
|
!
|
|
!> \param[in] N
|
|
!> \verbatim
|
|
!> N is INTEGER
|
|
!> The number of elements to be used from the vector x.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in] X
|
|
!> \verbatim
|
|
!> X is REAL array, dimension (1+(N-1)*abs(INCX))
|
|
!> The vector for which a scaled sum of squares is computed.
|
|
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in] INCX
|
|
!> \verbatim
|
|
!> INCX is INTEGER
|
|
!> The increment between successive values of the vector x.
|
|
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
|
|
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
|
|
!> If INCX = 0, x isn't a vector so there is no need to call
|
|
!> this subroutine. If you call it anyway, it will count x(1)
|
|
!> in the vector norm N times.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in,out] SCALE
|
|
!> \verbatim
|
|
!> SCALE is REAL
|
|
!> On entry, the value scale in the equation above.
|
|
!> On exit, SCALE is overwritten with scl , the scaling factor
|
|
!> for the sum of squares.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in,out] SUMSQ
|
|
!> \verbatim
|
|
!> SUMSQ is REAL
|
|
!> On entry, the value sumsq in the equation above.
|
|
!> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
|
!> squares from which scl has been factored out.
|
|
!> \endverbatim
|
|
!
|
|
! Authors:
|
|
! ========
|
|
!
|
|
!> \author Edward Anderson, Lockheed Martin
|
|
!
|
|
!> \par Contributors:
|
|
! ==================
|
|
!>
|
|
!> Weslley Pereira, University of Colorado Denver, USA
|
|
!> Nick Papior, Technical University of Denmark, DK
|
|
!
|
|
!> \par Further Details:
|
|
! =====================
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> Anderson E. (2017)
|
|
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
|
|
!> ACM Trans Math Softw 44:1--28
|
|
!> https://doi.org/10.1145/3061665
|
|
!>
|
|
!> Blue, James L. (1978)
|
|
!> A Portable Fortran Program to Find the Euclidean Norm of a Vector
|
|
!> ACM Trans Math Softw 4:15--23
|
|
!> https://doi.org/10.1145/355769.355771
|
|
!>
|
|
!> \endverbatim
|
|
!
|
|
!> \ingroup OTHERauxiliary
|
|
!
|
|
! =====================================================================
|
|
subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|
use LA_CONSTANTS, &
|
|
only: wp=>sp, zero=>szero, one=>sone, &
|
|
sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml
|
|
use LA_XISNAN
|
|
!
|
|
! -- LAPACK auxiliary routine --
|
|
! -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
!
|
|
! .. Scalar Arguments ..
|
|
integer :: incx, n
|
|
real(wp) :: scl, sumsq
|
|
! ..
|
|
! .. Array Arguments ..
|
|
real(wp) :: x(*)
|
|
! ..
|
|
! .. Local Scalars ..
|
|
integer :: i, ix
|
|
logical :: notbig
|
|
real(wp) :: abig, amed, asml, ax, ymax, ymin
|
|
! ..
|
|
!
|
|
! Quick return if possible
|
|
!
|
|
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
|
|
if( sumsq == zero ) scl = one
|
|
if( scl == zero ) then
|
|
scl = one
|
|
sumsq = zero
|
|
end if
|
|
if (n <= 0) then
|
|
return
|
|
end if
|
|
!
|
|
! Compute the sum of squares in 3 accumulators:
|
|
! abig -- sums of squares scaled down to avoid overflow
|
|
! asml -- sums of squares scaled up to avoid underflow
|
|
! amed -- sums of squares that do not require scaling
|
|
! The thresholds and multipliers are
|
|
! tbig -- values bigger than this are scaled down by sbig
|
|
! tsml -- values smaller than this are scaled up by ssml
|
|
!
|
|
notbig = .true.
|
|
asml = zero
|
|
amed = zero
|
|
abig = zero
|
|
ix = 1
|
|
if( incx < 0 ) ix = 1 - (n-1)*incx
|
|
do i = 1, n
|
|
ax = abs(x(ix))
|
|
if (ax > tbig) then
|
|
abig = abig + (ax*sbig)**2
|
|
notbig = .false.
|
|
else if (ax < tsml) then
|
|
if (notbig) asml = asml + (ax*ssml)**2
|
|
else
|
|
amed = amed + ax**2
|
|
end if
|
|
ix = ix + incx
|
|
end do
|
|
!
|
|
! Put the existing sum of squares into one of the accumulators
|
|
!
|
|
if( sumsq > zero ) then
|
|
ax = scl*sqrt( sumsq )
|
|
if (ax > tbig) then
|
|
! We assume scl >= sqrt( TINY*EPS ) / sbig
|
|
abig = abig + (scl*sbig)**2 * sumsq
|
|
else if (ax < tsml) then
|
|
! We assume scl <= sqrt( HUGE ) / ssml
|
|
if (notbig) asml = asml + (scl*ssml)**2 * sumsq
|
|
else
|
|
amed = amed + scl**2 * sumsq
|
|
end if
|
|
end if
|
|
!
|
|
! Combine abig and amed or amed and asml if more than one
|
|
! accumulator was used.
|
|
!
|
|
if (abig > zero) then
|
|
!
|
|
! Combine abig and amed if abig > 0.
|
|
!
|
|
if (amed > zero .or. LA_ISNAN(amed)) then
|
|
abig = abig + (amed*sbig)*sbig
|
|
end if
|
|
scl = one / sbig
|
|
sumsq = abig
|
|
else if (asml > zero) then
|
|
!
|
|
! Combine amed and asml if asml > 0.
|
|
!
|
|
if (amed > zero .or. LA_ISNAN(amed)) then
|
|
amed = sqrt(amed)
|
|
asml = sqrt(asml) / ssml
|
|
if (asml > amed) then
|
|
ymin = amed
|
|
ymax = asml
|
|
else
|
|
ymin = asml
|
|
ymax = amed
|
|
end if
|
|
scl = one
|
|
sumsq = ymax**2*( one + (ymin/ymax)**2 )
|
|
else
|
|
scl = one / ssml
|
|
sumsq = asml
|
|
end if
|
|
else
|
|
!
|
|
! Otherwise all values are mid-range or zero
|
|
!
|
|
scl = one
|
|
sumsq = amed
|
|
end if
|
|
return
|
|
end subroutine
|
|
|