Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

739 lines
26 KiB

*> \brief \b SORCSD2BY1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORCSD2BY1 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2by1.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2by1.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2by1.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
* LDV1T, WORK, LWORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBU1, JOBU2, JOBV1T
* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
* $ M, P, Q
* ..
* .. Array Arguments ..
* REAL THETA(*)
* REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
* $ X11(LDX11,*), X21(LDX21,*)
* INTEGER IWORK(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*>\verbatim
*>
*> SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
*> orthonormal columns that has been partitioned into a 2-by-1 block
*> structure:
*>
*> [ I1 0 0 ]
*> [ 0 C 0 ]
*> [ X11 ] [ U1 | ] [ 0 0 0 ]
*> X = [-----] = [---------] [----------] V1**T .
*> [ X21 ] [ | U2 ] [ 0 0 0 ]
*> [ 0 S 0 ]
*> [ 0 0 I2]
*>
*> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
*> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
*> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
*> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
*> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBU1
*> \verbatim
*> JOBU1 is CHARACTER
*> = 'Y': U1 is computed;
*> otherwise: U1 is not computed.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*> JOBU2 is CHARACTER
*> = 'Y': U2 is computed;
*> otherwise: U2 is not computed.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*> JOBV1T is CHARACTER
*> = 'Y': V1T is computed;
*> otherwise: V1T is not computed.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows in X.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in X11. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in X11 and X21. 0 <= Q <= M.
*> \endverbatim
*>
*> \param[in,out] X11
*> \verbatim
*> X11 is REAL array, dimension (LDX11,Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX11
*> \verbatim
*> LDX11 is INTEGER
*> The leading dimension of X11. LDX11 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] X21
*> \verbatim
*> X21 is REAL array, dimension (LDX21,Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX21
*> \verbatim
*> LDX21 is INTEGER
*> The leading dimension of X21. LDX21 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is REAL array, dimension (R), in which R =
*> MIN(P,M-P,Q,M-Q).
*> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
*> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*> U1 is REAL array, dimension (P)
*> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
*> MAX(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*> U2 is REAL array, dimension (M-P)
*> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
*> matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
*> MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*> V1T is REAL array, dimension (Q)
*> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
*> matrix V1**T.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
*> MAX(1,Q).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
*> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
*> define the matrix in intermediate bidiagonal-block form
*> remaining after nonconvergence. INFO specifies the number
*> of nonzero PHI's.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: SBBCSD did not converge. See the description of WORK
*> above for details.
*> \endverbatim
*
*> \par References:
* ================
*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
$ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, WORK, LWORK, IWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T
INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
$ M, P, Q
* ..
* .. Array Arguments ..
REAL THETA(*)
REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
$ X11(LDX11,*), X21(LDX21,*)
INTEGER IWORK(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
$ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
$ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
$ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
$ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
$ LWORKMIN, LWORKOPT, R
LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
* ..
* .. Local Arrays ..
REAL DUM1(1), DUM2(1,1)
* ..
* .. External Subroutines ..
EXTERNAL SBBCSD, SCOPY, SLACPY, SLAPMR, SLAPMT, SORBDB1,
$ SORBDB2, SORBDB3, SORBDB4, SORGLQ, SORGQR,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Function ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
WANTU1 = LSAME( JOBU1, 'Y' )
WANTU2 = LSAME( JOBU2, 'Y' )
WANTV1T = LSAME( JOBV1T, 'Y' )
LQUERY = LWORK .EQ. -1
*
IF( M .LT. 0 ) THEN
INFO = -4
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
INFO = -5
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
INFO = -6
ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
INFO = -8
ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
INFO = -10
ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
INFO = -15
ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
INFO = -17
END IF
*
R = MIN( P, M-P, Q, M-Q )
*
* Compute workspace
*
* WORK layout:
* |-------------------------------------------------------|
* | LWORKOPT (1) |
* |-------------------------------------------------------|
* | PHI (MAX(1,R-1)) |
* |-------------------------------------------------------|
* | TAUP1 (MAX(1,P)) | B11D (R) |
* | TAUP2 (MAX(1,M-P)) | B11E (R-1) |
* | TAUQ1 (MAX(1,Q)) | B12D (R) |
* |-----------------------------------------| B12E (R-1) |
* | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) |
* | | | | B21E (R-1) |
* | | | | B22D (R) |
* | | | | B22E (R-1) |
* | | | | SBBCSD WORK |
* |-------------------------------------------------------|
*
IF( INFO .EQ. 0 ) THEN
IPHI = 2
IB11D = IPHI + MAX( 1, R-1 )
IB11E = IB11D + MAX( 1, R )
IB12D = IB11E + MAX( 1, R - 1 )
IB12E = IB12D + MAX( 1, R )
IB21D = IB12E + MAX( 1, R - 1 )
IB21E = IB21D + MAX( 1, R )
IB22D = IB21E + MAX( 1, R - 1 )
IB22E = IB22D + MAX( 1, R )
IBBCSD = IB22E + MAX( 1, R - 1 )
ITAUP1 = IPHI + MAX( 1, R-1 )
ITAUP2 = ITAUP1 + MAX( 1, P )
ITAUQ1 = ITAUP2 + MAX( 1, M-P )
IORBDB = ITAUQ1 + MAX( 1, Q )
IORGQR = ITAUQ1 + MAX( 1, Q )
IORGLQ = ITAUQ1 + MAX( 1, Q )
LORGQRMIN = 1
LORGQROPT = 1
LORGLQMIN = 1
LORGLQOPT = 1
IF( R .EQ. Q ) THEN
CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ DUM1, DUM1, DUM1, DUM1, WORK, -1,
$ CHILDINFO )
LORBDB = INT( WORK(1) )
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
ENDIF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, M-P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
$ DUM1, WORK(1), -1, CHILDINFO )
LORGLQMIN = MAX( LORGLQMIN, Q-1 )
LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
END IF
CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
$ DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T, DUM2,
$ 1, DUM1, DUM1, DUM1, DUM1, DUM1,
$ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO
$ )
LBBCSD = INT( WORK(1) )
ELSE IF( R .EQ. P ) THEN
CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
$ CHILDINFO )
LORBDB = INT( WORK(1) )
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1,
$ WORK(1), -1, CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, P-1 )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, M-P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGLQMIN = MAX( LORGLQMIN, Q )
LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
END IF
CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
$ DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1, U2,
$ LDU2, DUM1, DUM1, DUM1, DUM1, DUM1,
$ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO
$ )
LBBCSD = INT( WORK(1) )
ELSE IF( R .EQ. M-P ) THEN
CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
$ CHILDINFO )
LORBDB = INT( WORK(1) )
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, DUM1,
$ WORK(1), -1, CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGLQMIN = MAX( LORGLQMIN, Q )
LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
END IF
CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
$ THETA, DUM1, DUM2, 1, V1T, LDV1T, U2, LDU2,
$ U1, LDU1, DUM1, DUM1, DUM1, DUM1,
$ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
$ CHILDINFO )
LBBCSD = INT( WORK(1) )
ELSE
CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ DUM1, DUM1, DUM1, DUM1, DUM1,
$ WORK(1), -1, CHILDINFO )
LORBDB = M + INT( WORK(1) )
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1),
$ -1, CHILDINFO )
LORGQRMIN = MAX( LORGQRMIN, M-P )
LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1,
$ CHILDINFO )
LORGLQMIN = MAX( LORGLQMIN, Q )
LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
END IF
CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
$ THETA, DUM1, U2, LDU2, U1, LDU1, DUM2, 1,
$ V1T, LDV1T, DUM1, DUM1, DUM1, DUM1,
$ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
$ CHILDINFO )
LBBCSD = INT( WORK(1) )
END IF
LWORKMIN = MAX( IORBDB+LORBDB-1,
$ IORGQR+LORGQRMIN-1,
$ IORGLQ+LORGLQMIN-1,
$ IBBCSD+LBBCSD-1 )
LWORKOPT = MAX( IORBDB+LORBDB-1,
$ IORGQR+LORGQROPT-1,
$ IORGLQ+LORGLQOPT-1,
$ IBBCSD+LBBCSD-1 )
WORK(1) = LWORKOPT
IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
END IF
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'SORCSD2BY1', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
LORGQR = LWORK-IORGQR+1
LORGLQ = LWORK-IORGLQ+1
*
* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
* in which R = MIN(P,M-P,Q,M-Q)
*
IF( R .EQ. Q ) THEN
*
* Case 1: R = Q
*
* Simultaneously bidiagonalize X11 and X21
*
CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
$ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
$ LORGQR, CHILDINFO )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
V1T(1,1) = ONE
DO J = 2, Q
V1T(1,J) = ZERO
V1T(J,1) = ZERO
END DO
CALL SLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
$ LDV1T )
CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQ, CHILDINFO )
END IF
*
* Simultaneously diagonalize X11 and X21.
*
CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
$ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T,
$ DUM2, 1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
$ WORK(IB12E), WORK(IB21D), WORK(IB21E),
$ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
$ CHILDINFO )
*
* Permute rows and columns to place zero submatrices in
* preferred positions
*
IF( Q .GT. 0 .AND. WANTU2 ) THEN
DO I = 1, Q
IWORK(I) = M - P - Q + I
END DO
DO I = Q + 1, M - P
IWORK(I) = I - Q
END DO
CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
END IF
ELSE IF( R .EQ. P ) THEN
*
* Case 2: R = P
*
* Simultaneously bidiagonalize X11 and X21
*
CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
$ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( WANTU1 .AND. P .GT. 0 ) THEN
U1(1,1) = ONE
DO J = 2, P
U1(1,J) = ZERO
U1(J,1) = ZERO
END DO
CALL SLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
$ WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQ, CHILDINFO )
END IF
*
* Simultaneously diagonalize X11 and X21.
*
CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
$ WORK(IPHI), V1T, LDV1T, DUM1, 1, U1, LDU1, U2,
$ LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D),
$ WORK(IB12E), WORK(IB21D), WORK(IB21E),
$ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
$ CHILDINFO )
*
* Permute rows and columns to place identity submatrices in
* preferred positions
*
IF( Q .GT. 0 .AND. WANTU2 ) THEN
DO I = 1, Q
IWORK(I) = M - P - Q + I
END DO
DO I = Q + 1, M - P
IWORK(I) = I - Q
END DO
CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
END IF
ELSE IF( R .EQ. M-P ) THEN
*
* Case 3: R = M-P
*
* Simultaneously bidiagonalize X11 and X21
*
CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
$ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
$ LORGQR, CHILDINFO )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
U2(1,1) = ONE
DO J = 2, M-P
U2(1,J) = ZERO
U2(J,1) = ZERO
END DO
CALL SLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
$ LDU2 )
CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
$ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQ, CHILDINFO )
END IF
*
* Simultaneously diagonalize X11 and X21.
*
CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
$ THETA, WORK(IPHI), DUM1, 1, V1T, LDV1T, U2,
$ LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E),
$ WORK(IB12D), WORK(IB12E), WORK(IB21D),
$ WORK(IB21E), WORK(IB22D), WORK(IB22E),
$ WORK(IBBCSD), LBBCSD, CHILDINFO )
*
* Permute rows and columns to place identity submatrices in
* preferred positions
*
IF( Q .GT. R ) THEN
DO I = 1, R
IWORK(I) = Q - R + I
END DO
DO I = R + 1, Q
IWORK(I) = I - R
END DO
IF( WANTU1 ) THEN
CALL SLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
END IF
IF( WANTV1T ) THEN
CALL SLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
END IF
END IF
ELSE
*
* Case 4: R = M-Q
*
* Simultaneously bidiagonalize X11 and X21
*
CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
$ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
$ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
$ LORBDB-M, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
END IF
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SCOPY( P, WORK(IORBDB), 1, U1, 1 )
DO J = 2, P
U1(1,J) = ZERO
END DO
CALL SLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
$ LDU1 )
CALL SORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
$ WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
DO J = 2, M-P
U2(1,J) = ZERO
END DO
CALL SLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
$ LDU2 )
CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGQR), LORGQR, CHILDINFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
CALL SLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
$ V1T(M-Q+1,M-Q+1), LDV1T )
CALL SLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
$ V1T(P+1,P+1), LDV1T )
CALL SORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQ, CHILDINFO )
END IF
*
* Simultaneously diagonalize X11 and X21.
*
CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
$ THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM1, 1,
$ V1T, LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
$ WORK(IB12E), WORK(IB21D), WORK(IB21E),
$ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
$ CHILDINFO )
*
* Permute rows and columns to place identity submatrices in
* preferred positions
*
IF( P .GT. R ) THEN
DO I = 1, R
IWORK(I) = P - R + I
END DO
DO I = R + 1, P
IWORK(I) = I - R
END DO
IF( WANTU1 ) THEN
CALL SLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
END IF
IF( WANTV1T ) THEN
CALL SLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
END IF
END IF
END IF
*
RETURN
*
* End of SORCSD2BY1
*
END