You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
6.3 KiB
237 lines
6.3 KiB
*> \brief \b SORGHR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download SORGHR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorghr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorghr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorghr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IHI, ILO, INFO, LDA, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SORGHR generates a real orthogonal matrix Q which is defined as the
|
|
*> product of IHI-ILO elementary reflectors of order N, as returned by
|
|
*> SGEHRD:
|
|
*>
|
|
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix Q. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*>
|
|
*> ILO and IHI must have the same values as in the previous call
|
|
*> of SGEHRD. Q is equal to the unit matrix except in the
|
|
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
|
|
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> On entry, the vectors which define the elementary reflectors,
|
|
*> as returned by SGEHRD.
|
|
*> On exit, the N-by-N orthogonal matrix Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (N-1)
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i), as returned by SGEHRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= IHI-ILO.
|
|
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
|
|
*> the optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IHI, ILO, INFO, LDA, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER I, IINFO, J, LWKOPT, NB, NH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SORGQR, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
NH = IHI - ILO
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -8
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
NB = ILAENV( 1, 'SORGQR', ' ', NH, NH, NH, -1 )
|
|
LWKOPT = MAX( 1, NH )*NB
|
|
WORK( 1 ) = LWKOPT
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SORGHR', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Shift the vectors which define the elementary reflectors one
|
|
* column to the right, and set the first ilo and the last n-ihi
|
|
* rows and columns to those of the unit matrix
|
|
*
|
|
DO 40 J = IHI, ILO + 1, -1
|
|
DO 10 I = 1, J - 1
|
|
A( I, J ) = ZERO
|
|
10 CONTINUE
|
|
DO 20 I = J + 1, IHI
|
|
A( I, J ) = A( I, J-1 )
|
|
20 CONTINUE
|
|
DO 30 I = IHI + 1, N
|
|
A( I, J ) = ZERO
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
DO 60 J = 1, ILO
|
|
DO 50 I = 1, N
|
|
A( I, J ) = ZERO
|
|
50 CONTINUE
|
|
A( J, J ) = ONE
|
|
60 CONTINUE
|
|
DO 80 J = IHI + 1, N
|
|
DO 70 I = 1, N
|
|
A( I, J ) = ZERO
|
|
70 CONTINUE
|
|
A( J, J ) = ONE
|
|
80 CONTINUE
|
|
*
|
|
IF( NH.GT.0 ) THEN
|
|
*
|
|
* Generate Q(ilo+1:ihi,ilo+1:ihi)
|
|
*
|
|
CALL SORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
|
|
$ WORK, LWORK, IINFO )
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
*
|
|
* End of SORGHR
|
|
*
|
|
END
|
|
|