You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1072 lines
36 KiB
1072 lines
36 KiB
*> \brief \b STGSY2 solves the generalized Sylvester equation (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download STGSY2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsy2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsy2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsy2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
|
* LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
|
|
* IWORK, PQ, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANS
|
|
* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
|
|
* $ PQ
|
|
* REAL RDSCAL, RDSUM, SCALE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
|
* $ D( LDD, * ), E( LDE, * ), F( LDF, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> STGSY2 solves the generalized Sylvester equation:
|
|
*>
|
|
*> A * R - L * B = scale * C (1)
|
|
*> D * R - L * E = scale * F,
|
|
*>
|
|
*> using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
|
|
*> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
|
|
*> N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
|
|
*> must be in generalized Schur canonical form, i.e. A, B are upper
|
|
*> quasi triangular and D, E are upper triangular. The solution (R, L)
|
|
*> overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
|
|
*> chosen to avoid overflow.
|
|
*>
|
|
*> In matrix notation solving equation (1) corresponds to solve
|
|
*> Z*x = scale*b, where Z is defined as
|
|
*>
|
|
*> Z = [ kron(In, A) -kron(B**T, Im) ] (2)
|
|
*> [ kron(In, D) -kron(E**T, Im) ],
|
|
*>
|
|
*> Ik is the identity matrix of size k and X**T is the transpose of X.
|
|
*> kron(X, Y) is the Kronecker product between the matrices X and Y.
|
|
*> In the process of solving (1), we solve a number of such systems
|
|
*> where Dim(In), Dim(In) = 1 or 2.
|
|
*>
|
|
*> If TRANS = 'T', solve the transposed system Z**T*y = scale*b for y,
|
|
*> which is equivalent to solve for R and L in
|
|
*>
|
|
*> A**T * R + D**T * L = scale * C (3)
|
|
*> R * B**T + L * E**T = scale * -F
|
|
*>
|
|
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
|
|
*> sigma_min(Z) using reverse communication with SLACON.
|
|
*>
|
|
*> STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
|
|
*> of an upper bound on the separation between to matrix pairs. Then
|
|
*> the input (A, D), (B, E) are sub-pencils of the matrix pair in
|
|
*> STGSYL. See STGSYL for details.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': solve the generalized Sylvester equation (1).
|
|
*> = 'T': solve the 'transposed' system (3).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IJOB
|
|
*> \verbatim
|
|
*> IJOB is INTEGER
|
|
*> Specifies what kind of functionality to be performed.
|
|
*> = 0: solve (1) only.
|
|
*> = 1: A contribution from this subsystem to a Frobenius
|
|
*> norm-based estimate of the separation between two matrix
|
|
*> pairs is computed. (look ahead strategy is used).
|
|
*> = 2: A contribution from this subsystem to a Frobenius
|
|
*> norm-based estimate of the separation between two matrix
|
|
*> pairs is computed. (SGECON on sub-systems is used.)
|
|
*> Not referenced if TRANS = 'T'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> On entry, M specifies the order of A and D, and the row
|
|
*> dimension of C, F, R and L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the order of B and E, and the column
|
|
*> dimension of C, F, R and L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA, M)
|
|
*> On entry, A contains an upper quasi triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the matrix A. LDA >= max(1, M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB, N)
|
|
*> On entry, B contains an upper quasi triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the matrix B. LDB >= max(1, N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is REAL array, dimension (LDC, N)
|
|
*> On entry, C contains the right-hand-side of the first matrix
|
|
*> equation in (1).
|
|
*> On exit, if IJOB = 0, C has been overwritten by the
|
|
*> solution R.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the matrix C. LDC >= max(1, M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (LDD, M)
|
|
*> On entry, D contains an upper triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDD
|
|
*> \verbatim
|
|
*> LDD is INTEGER
|
|
*> The leading dimension of the matrix D. LDD >= max(1, M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (LDE, N)
|
|
*> On entry, E contains an upper triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDE
|
|
*> \verbatim
|
|
*> LDE is INTEGER
|
|
*> The leading dimension of the matrix E. LDE >= max(1, N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] F
|
|
*> \verbatim
|
|
*> F is REAL array, dimension (LDF, N)
|
|
*> On entry, F contains the right-hand-side of the second matrix
|
|
*> equation in (1).
|
|
*> On exit, if IJOB = 0, F has been overwritten by the
|
|
*> solution L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDF
|
|
*> \verbatim
|
|
*> LDF is INTEGER
|
|
*> The leading dimension of the matrix F. LDF >= max(1, M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is REAL
|
|
*> On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
|
|
*> R and L (C and F on entry) will hold the solutions to a
|
|
*> slightly perturbed system but the input matrices A, B, D and
|
|
*> E have not been changed. If SCALE = 0, R and L will hold the
|
|
*> solutions to the homogeneous system with C = F = 0. Normally,
|
|
*> SCALE = 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] RDSUM
|
|
*> \verbatim
|
|
*> RDSUM is REAL
|
|
*> On entry, the sum of squares of computed contributions to
|
|
*> the Dif-estimate under computation by STGSYL, where the
|
|
*> scaling factor RDSCAL (see below) has been factored out.
|
|
*> On exit, the corresponding sum of squares updated with the
|
|
*> contributions from the current sub-system.
|
|
*> If TRANS = 'T' RDSUM is not touched.
|
|
*> NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] RDSCAL
|
|
*> \verbatim
|
|
*> RDSCAL is REAL
|
|
*> On entry, scaling factor used to prevent overflow in RDSUM.
|
|
*> On exit, RDSCAL is updated w.r.t. the current contributions
|
|
*> in RDSUM.
|
|
*> If TRANS = 'T', RDSCAL is not touched.
|
|
*> NOTE: RDSCAL only makes sense when STGSY2 is called by
|
|
*> STGSYL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (M+N+2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PQ
|
|
*> \verbatim
|
|
*> PQ is INTEGER
|
|
*> On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
|
|
*> 8-by-8) solved by this routine.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> On exit, if INFO is set to
|
|
*> =0: Successful exit
|
|
*> <0: If INFO = -i, the i-th argument had an illegal value.
|
|
*> >0: The matrix pairs (A, D) and (B, E) have common or very
|
|
*> close eigenvalues.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup realSYauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
|
$ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
|
|
$ IWORK, PQ, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANS
|
|
INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
|
|
$ PQ
|
|
REAL RDSCAL, RDSUM, SCALE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
|
$ D( LDD, * ), E( LDE, * ), F( LDF, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
* Replaced various illegal calls to SCOPY by calls to SLASET.
|
|
* Sven Hammarling, 27/5/02.
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER LDZ
|
|
PARAMETER ( LDZ = 8 )
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOTRAN
|
|
INTEGER I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
|
|
$ K, MB, NB, P, Q, ZDIM
|
|
REAL ALPHA, SCALOC
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IPIV( LDZ ), JPIV( LDZ )
|
|
REAL RHS( LDZ ), Z( LDZ, LDZ )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SCOPY, SGEMM, SGEMV, SGER, SGESC2,
|
|
$ SGETC2, SSCAL, SLASET, SLATDF, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test input parameters
|
|
*
|
|
INFO = 0
|
|
IERR = 0
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( NOTRAN ) THEN
|
|
IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
|
|
INFO = -2
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( M.LE.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LE.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
|
|
INFO = -12
|
|
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
|
|
INFO = -14
|
|
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
|
|
INFO = -16
|
|
END IF
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'STGSY2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Determine block structure of A
|
|
*
|
|
PQ = 0
|
|
P = 0
|
|
I = 1
|
|
10 CONTINUE
|
|
IF( I.GT.M )
|
|
$ GO TO 20
|
|
P = P + 1
|
|
IWORK( P ) = I
|
|
IF( I.EQ.M )
|
|
$ GO TO 20
|
|
IF( A( I+1, I ).NE.ZERO ) THEN
|
|
I = I + 2
|
|
ELSE
|
|
I = I + 1
|
|
END IF
|
|
GO TO 10
|
|
20 CONTINUE
|
|
IWORK( P+1 ) = M + 1
|
|
*
|
|
* Determine block structure of B
|
|
*
|
|
Q = P + 1
|
|
J = 1
|
|
30 CONTINUE
|
|
IF( J.GT.N )
|
|
$ GO TO 40
|
|
Q = Q + 1
|
|
IWORK( Q ) = J
|
|
IF( J.EQ.N )
|
|
$ GO TO 40
|
|
IF( B( J+1, J ).NE.ZERO ) THEN
|
|
J = J + 2
|
|
ELSE
|
|
J = J + 1
|
|
END IF
|
|
GO TO 30
|
|
40 CONTINUE
|
|
IWORK( Q+1 ) = N + 1
|
|
PQ = P*( Q-P-1 )
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* Solve (I, J) - subsystem
|
|
* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
|
|
* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
|
|
* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
|
|
*
|
|
SCALE = ONE
|
|
SCALOC = ONE
|
|
DO 120 J = P + 2, Q
|
|
JS = IWORK( J )
|
|
JSP1 = JS + 1
|
|
JE = IWORK( J+1 ) - 1
|
|
NB = JE - JS + 1
|
|
DO 110 I = P, 1, -1
|
|
*
|
|
IS = IWORK( I )
|
|
ISP1 = IS + 1
|
|
IE = IWORK( I+1 ) - 1
|
|
MB = IE - IS + 1
|
|
ZDIM = MB*NB*2
|
|
*
|
|
IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
|
|
*
|
|
* Build a 2-by-2 system Z * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = D( IS, IS )
|
|
Z( 1, 2 ) = -B( JS, JS )
|
|
Z( 2, 2 ) = -E( JS, JS )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = F( IS, JS )
|
|
*
|
|
* Solve Z * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
*
|
|
IF( IJOB.EQ.0 ) THEN
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
|
|
$ SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 50 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
50 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
ELSE
|
|
CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
|
|
$ RDSCAL, IPIV, JPIV )
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
F( IS, JS ) = RHS( 2 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( I.GT.1 ) THEN
|
|
ALPHA = -RHS( 1 )
|
|
CALL SAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ),
|
|
$ 1 )
|
|
CALL SAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ),
|
|
$ 1 )
|
|
END IF
|
|
IF( J.LT.Q ) THEN
|
|
CALL SAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB,
|
|
$ C( IS, JE+1 ), LDC )
|
|
CALL SAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE,
|
|
$ F( IS, JE+1 ), LDF )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
|
|
*
|
|
* Build a 4-by-4 system Z * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = ZERO
|
|
Z( 3, 1 ) = D( IS, IS )
|
|
Z( 4, 1 ) = ZERO
|
|
*
|
|
Z( 1, 2 ) = ZERO
|
|
Z( 2, 2 ) = A( IS, IS )
|
|
Z( 3, 2 ) = ZERO
|
|
Z( 4, 2 ) = D( IS, IS )
|
|
*
|
|
Z( 1, 3 ) = -B( JS, JS )
|
|
Z( 2, 3 ) = -B( JS, JSP1 )
|
|
Z( 3, 3 ) = -E( JS, JS )
|
|
Z( 4, 3 ) = -E( JS, JSP1 )
|
|
*
|
|
Z( 1, 4 ) = -B( JSP1, JS )
|
|
Z( 2, 4 ) = -B( JSP1, JSP1 )
|
|
Z( 3, 4 ) = ZERO
|
|
Z( 4, 4 ) = -E( JSP1, JSP1 )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = C( IS, JSP1 )
|
|
RHS( 3 ) = F( IS, JS )
|
|
RHS( 4 ) = F( IS, JSP1 )
|
|
*
|
|
* Solve Z * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
*
|
|
IF( IJOB.EQ.0 ) THEN
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
|
|
$ SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 60 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
60 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
ELSE
|
|
CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
|
|
$ RDSCAL, IPIV, JPIV )
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
C( IS, JSP1 ) = RHS( 2 )
|
|
F( IS, JS ) = RHS( 3 )
|
|
F( IS, JSP1 ) = RHS( 4 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( I.GT.1 ) THEN
|
|
CALL SGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ),
|
|
$ 1, C( 1, JS ), LDC )
|
|
CALL SGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ),
|
|
$ 1, F( 1, JS ), LDF )
|
|
END IF
|
|
IF( J.LT.Q ) THEN
|
|
CALL SAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB,
|
|
$ C( IS, JE+1 ), LDC )
|
|
CALL SAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE,
|
|
$ F( IS, JE+1 ), LDF )
|
|
CALL SAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB,
|
|
$ C( IS, JE+1 ), LDC )
|
|
CALL SAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE,
|
|
$ F( IS, JE+1 ), LDF )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
|
|
*
|
|
* Build a 4-by-4 system Z * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = A( ISP1, IS )
|
|
Z( 3, 1 ) = D( IS, IS )
|
|
Z( 4, 1 ) = ZERO
|
|
*
|
|
Z( 1, 2 ) = A( IS, ISP1 )
|
|
Z( 2, 2 ) = A( ISP1, ISP1 )
|
|
Z( 3, 2 ) = D( IS, ISP1 )
|
|
Z( 4, 2 ) = D( ISP1, ISP1 )
|
|
*
|
|
Z( 1, 3 ) = -B( JS, JS )
|
|
Z( 2, 3 ) = ZERO
|
|
Z( 3, 3 ) = -E( JS, JS )
|
|
Z( 4, 3 ) = ZERO
|
|
*
|
|
Z( 1, 4 ) = ZERO
|
|
Z( 2, 4 ) = -B( JS, JS )
|
|
Z( 3, 4 ) = ZERO
|
|
Z( 4, 4 ) = -E( JS, JS )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = C( ISP1, JS )
|
|
RHS( 3 ) = F( IS, JS )
|
|
RHS( 4 ) = F( ISP1, JS )
|
|
*
|
|
* Solve Z * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
IF( IJOB.EQ.0 ) THEN
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
|
|
$ SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 70 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
70 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
ELSE
|
|
CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
|
|
$ RDSCAL, IPIV, JPIV )
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
C( ISP1, JS ) = RHS( 2 )
|
|
F( IS, JS ) = RHS( 3 )
|
|
F( ISP1, JS ) = RHS( 4 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( I.GT.1 ) THEN
|
|
CALL SGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA,
|
|
$ RHS( 1 ), 1, ONE, C( 1, JS ), 1 )
|
|
CALL SGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD,
|
|
$ RHS( 1 ), 1, ONE, F( 1, JS ), 1 )
|
|
END IF
|
|
IF( J.LT.Q ) THEN
|
|
CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
|
|
$ B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC )
|
|
CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
|
|
$ E( JS, JE+1 ), LDE, F( IS, JE+1 ), LDF )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
|
|
*
|
|
* Build an 8-by-8 system Z * x = RHS
|
|
*
|
|
CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = A( ISP1, IS )
|
|
Z( 5, 1 ) = D( IS, IS )
|
|
*
|
|
Z( 1, 2 ) = A( IS, ISP1 )
|
|
Z( 2, 2 ) = A( ISP1, ISP1 )
|
|
Z( 5, 2 ) = D( IS, ISP1 )
|
|
Z( 6, 2 ) = D( ISP1, ISP1 )
|
|
*
|
|
Z( 3, 3 ) = A( IS, IS )
|
|
Z( 4, 3 ) = A( ISP1, IS )
|
|
Z( 7, 3 ) = D( IS, IS )
|
|
*
|
|
Z( 3, 4 ) = A( IS, ISP1 )
|
|
Z( 4, 4 ) = A( ISP1, ISP1 )
|
|
Z( 7, 4 ) = D( IS, ISP1 )
|
|
Z( 8, 4 ) = D( ISP1, ISP1 )
|
|
*
|
|
Z( 1, 5 ) = -B( JS, JS )
|
|
Z( 3, 5 ) = -B( JS, JSP1 )
|
|
Z( 5, 5 ) = -E( JS, JS )
|
|
Z( 7, 5 ) = -E( JS, JSP1 )
|
|
*
|
|
Z( 2, 6 ) = -B( JS, JS )
|
|
Z( 4, 6 ) = -B( JS, JSP1 )
|
|
Z( 6, 6 ) = -E( JS, JS )
|
|
Z( 8, 6 ) = -E( JS, JSP1 )
|
|
*
|
|
Z( 1, 7 ) = -B( JSP1, JS )
|
|
Z( 3, 7 ) = -B( JSP1, JSP1 )
|
|
Z( 7, 7 ) = -E( JSP1, JSP1 )
|
|
*
|
|
Z( 2, 8 ) = -B( JSP1, JS )
|
|
Z( 4, 8 ) = -B( JSP1, JSP1 )
|
|
Z( 8, 8 ) = -E( JSP1, JSP1 )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
K = 1
|
|
II = MB*NB + 1
|
|
DO 80 JJ = 0, NB - 1
|
|
CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
|
|
CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
|
|
K = K + MB
|
|
II = II + MB
|
|
80 CONTINUE
|
|
*
|
|
* Solve Z * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
IF( IJOB.EQ.0 ) THEN
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
|
|
$ SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 90 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
90 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
ELSE
|
|
CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
|
|
$ RDSCAL, IPIV, JPIV )
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
K = 1
|
|
II = MB*NB + 1
|
|
DO 100 JJ = 0, NB - 1
|
|
CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
|
|
CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
|
|
K = K + MB
|
|
II = II + MB
|
|
100 CONTINUE
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( I.GT.1 ) THEN
|
|
CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
|
|
$ A( 1, IS ), LDA, RHS( 1 ), MB, ONE,
|
|
$ C( 1, JS ), LDC )
|
|
CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
|
|
$ D( 1, IS ), LDD, RHS( 1 ), MB, ONE,
|
|
$ F( 1, JS ), LDF )
|
|
END IF
|
|
IF( J.LT.Q ) THEN
|
|
K = MB*NB + 1
|
|
CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
|
|
$ MB, B( JS, JE+1 ), LDB, ONE,
|
|
$ C( IS, JE+1 ), LDC )
|
|
CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
|
|
$ MB, E( JS, JE+1 ), LDE, ONE,
|
|
$ F( IS, JE+1 ), LDF )
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
ELSE
|
|
*
|
|
* Solve (I, J) - subsystem
|
|
* A(I, I)**T * R(I, J) + D(I, I)**T * L(J, J) = C(I, J)
|
|
* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
|
|
* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1
|
|
*
|
|
SCALE = ONE
|
|
SCALOC = ONE
|
|
DO 200 I = 1, P
|
|
*
|
|
IS = IWORK( I )
|
|
ISP1 = IS + 1
|
|
IE = IWORK( I+1 ) - 1
|
|
MB = IE - IS + 1
|
|
DO 190 J = Q, P + 2, -1
|
|
*
|
|
JS = IWORK( J )
|
|
JSP1 = JS + 1
|
|
JE = IWORK( J+1 ) - 1
|
|
NB = JE - JS + 1
|
|
ZDIM = MB*NB*2
|
|
IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
|
|
*
|
|
* Build a 2-by-2 system Z**T * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = -B( JS, JS )
|
|
Z( 1, 2 ) = D( IS, IS )
|
|
Z( 2, 2 ) = -E( JS, JS )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = F( IS, JS )
|
|
*
|
|
* Solve Z**T * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
*
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 130 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
130 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
F( IS, JS ) = RHS( 2 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( J.GT.P+2 ) THEN
|
|
ALPHA = RHS( 1 )
|
|
CALL SAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ),
|
|
$ LDF )
|
|
ALPHA = RHS( 2 )
|
|
CALL SAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ),
|
|
$ LDF )
|
|
END IF
|
|
IF( I.LT.P ) THEN
|
|
ALPHA = -RHS( 1 )
|
|
CALL SAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA,
|
|
$ C( IE+1, JS ), 1 )
|
|
ALPHA = -RHS( 2 )
|
|
CALL SAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD,
|
|
$ C( IE+1, JS ), 1 )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
|
|
*
|
|
* Build a 4-by-4 system Z**T * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = ZERO
|
|
Z( 3, 1 ) = -B( JS, JS )
|
|
Z( 4, 1 ) = -B( JSP1, JS )
|
|
*
|
|
Z( 1, 2 ) = ZERO
|
|
Z( 2, 2 ) = A( IS, IS )
|
|
Z( 3, 2 ) = -B( JS, JSP1 )
|
|
Z( 4, 2 ) = -B( JSP1, JSP1 )
|
|
*
|
|
Z( 1, 3 ) = D( IS, IS )
|
|
Z( 2, 3 ) = ZERO
|
|
Z( 3, 3 ) = -E( JS, JS )
|
|
Z( 4, 3 ) = ZERO
|
|
*
|
|
Z( 1, 4 ) = ZERO
|
|
Z( 2, 4 ) = D( IS, IS )
|
|
Z( 3, 4 ) = -E( JS, JSP1 )
|
|
Z( 4, 4 ) = -E( JSP1, JSP1 )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = C( IS, JSP1 )
|
|
RHS( 3 ) = F( IS, JS )
|
|
RHS( 4 ) = F( IS, JSP1 )
|
|
*
|
|
* Solve Z**T * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 140 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
140 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
C( IS, JSP1 ) = RHS( 2 )
|
|
F( IS, JS ) = RHS( 3 )
|
|
F( IS, JSP1 ) = RHS( 4 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( J.GT.P+2 ) THEN
|
|
CALL SAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1,
|
|
$ F( IS, 1 ), LDF )
|
|
CALL SAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1,
|
|
$ F( IS, 1 ), LDF )
|
|
CALL SAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1,
|
|
$ F( IS, 1 ), LDF )
|
|
CALL SAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1,
|
|
$ F( IS, 1 ), LDF )
|
|
END IF
|
|
IF( I.LT.P ) THEN
|
|
CALL SGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA,
|
|
$ RHS( 1 ), 1, C( IE+1, JS ), LDC )
|
|
CALL SGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD,
|
|
$ RHS( 3 ), 1, C( IE+1, JS ), LDC )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
|
|
*
|
|
* Build a 4-by-4 system Z**T * x = RHS
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = A( IS, ISP1 )
|
|
Z( 3, 1 ) = -B( JS, JS )
|
|
Z( 4, 1 ) = ZERO
|
|
*
|
|
Z( 1, 2 ) = A( ISP1, IS )
|
|
Z( 2, 2 ) = A( ISP1, ISP1 )
|
|
Z( 3, 2 ) = ZERO
|
|
Z( 4, 2 ) = -B( JS, JS )
|
|
*
|
|
Z( 1, 3 ) = D( IS, IS )
|
|
Z( 2, 3 ) = D( IS, ISP1 )
|
|
Z( 3, 3 ) = -E( JS, JS )
|
|
Z( 4, 3 ) = ZERO
|
|
*
|
|
Z( 1, 4 ) = ZERO
|
|
Z( 2, 4 ) = D( ISP1, ISP1 )
|
|
Z( 3, 4 ) = ZERO
|
|
Z( 4, 4 ) = -E( JS, JS )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
RHS( 1 ) = C( IS, JS )
|
|
RHS( 2 ) = C( ISP1, JS )
|
|
RHS( 3 ) = F( IS, JS )
|
|
RHS( 4 ) = F( ISP1, JS )
|
|
*
|
|
* Solve Z**T * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
*
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 150 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
150 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
C( IS, JS ) = RHS( 1 )
|
|
C( ISP1, JS ) = RHS( 2 )
|
|
F( IS, JS ) = RHS( 3 )
|
|
F( ISP1, JS ) = RHS( 4 )
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( J.GT.P+2 ) THEN
|
|
CALL SGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ),
|
|
$ 1, F( IS, 1 ), LDF )
|
|
CALL SGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ),
|
|
$ 1, F( IS, 1 ), LDF )
|
|
END IF
|
|
IF( I.LT.P ) THEN
|
|
CALL SGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ),
|
|
$ LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ),
|
|
$ 1 )
|
|
CALL SGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ),
|
|
$ LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ),
|
|
$ 1 )
|
|
END IF
|
|
*
|
|
ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
|
|
*
|
|
* Build an 8-by-8 system Z**T * x = RHS
|
|
*
|
|
CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
|
|
*
|
|
Z( 1, 1 ) = A( IS, IS )
|
|
Z( 2, 1 ) = A( IS, ISP1 )
|
|
Z( 5, 1 ) = -B( JS, JS )
|
|
Z( 7, 1 ) = -B( JSP1, JS )
|
|
*
|
|
Z( 1, 2 ) = A( ISP1, IS )
|
|
Z( 2, 2 ) = A( ISP1, ISP1 )
|
|
Z( 6, 2 ) = -B( JS, JS )
|
|
Z( 8, 2 ) = -B( JSP1, JS )
|
|
*
|
|
Z( 3, 3 ) = A( IS, IS )
|
|
Z( 4, 3 ) = A( IS, ISP1 )
|
|
Z( 5, 3 ) = -B( JS, JSP1 )
|
|
Z( 7, 3 ) = -B( JSP1, JSP1 )
|
|
*
|
|
Z( 3, 4 ) = A( ISP1, IS )
|
|
Z( 4, 4 ) = A( ISP1, ISP1 )
|
|
Z( 6, 4 ) = -B( JS, JSP1 )
|
|
Z( 8, 4 ) = -B( JSP1, JSP1 )
|
|
*
|
|
Z( 1, 5 ) = D( IS, IS )
|
|
Z( 2, 5 ) = D( IS, ISP1 )
|
|
Z( 5, 5 ) = -E( JS, JS )
|
|
*
|
|
Z( 2, 6 ) = D( ISP1, ISP1 )
|
|
Z( 6, 6 ) = -E( JS, JS )
|
|
*
|
|
Z( 3, 7 ) = D( IS, IS )
|
|
Z( 4, 7 ) = D( IS, ISP1 )
|
|
Z( 5, 7 ) = -E( JS, JSP1 )
|
|
Z( 7, 7 ) = -E( JSP1, JSP1 )
|
|
*
|
|
Z( 4, 8 ) = D( ISP1, ISP1 )
|
|
Z( 6, 8 ) = -E( JS, JSP1 )
|
|
Z( 8, 8 ) = -E( JSP1, JSP1 )
|
|
*
|
|
* Set up right hand side(s)
|
|
*
|
|
K = 1
|
|
II = MB*NB + 1
|
|
DO 160 JJ = 0, NB - 1
|
|
CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
|
|
CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
|
|
K = K + MB
|
|
II = II + MB
|
|
160 CONTINUE
|
|
*
|
|
*
|
|
* Solve Z**T * x = RHS
|
|
*
|
|
CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
|
|
IF( IERR.GT.0 )
|
|
$ INFO = IERR
|
|
*
|
|
CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 170 K = 1, N
|
|
CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
|
|
CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
|
|
170 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
*
|
|
* Unpack solution vector(s)
|
|
*
|
|
K = 1
|
|
II = MB*NB + 1
|
|
DO 180 JJ = 0, NB - 1
|
|
CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
|
|
CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
|
|
K = K + MB
|
|
II = II + MB
|
|
180 CONTINUE
|
|
*
|
|
* Substitute R(I, J) and L(I, J) into remaining
|
|
* equation.
|
|
*
|
|
IF( J.GT.P+2 ) THEN
|
|
CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE,
|
|
$ C( IS, JS ), LDC, B( 1, JS ), LDB, ONE,
|
|
$ F( IS, 1 ), LDF )
|
|
CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE,
|
|
$ F( IS, JS ), LDF, E( 1, JS ), LDE, ONE,
|
|
$ F( IS, 1 ), LDF )
|
|
END IF
|
|
IF( I.LT.P ) THEN
|
|
CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
|
|
$ A( IS, IE+1 ), LDA, C( IS, JS ), LDC,
|
|
$ ONE, C( IE+1, JS ), LDC )
|
|
CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
|
|
$ D( IS, IE+1 ), LDD, F( IS, JS ), LDF,
|
|
$ ONE, C( IE+1, JS ), LDC )
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
190 CONTINUE
|
|
200 CONTINUE
|
|
*
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of STGSY2
|
|
*
|
|
END
|
|
|