You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
13 KiB
420 lines
13 KiB
*> \brief <b> ZGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGEES + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgees.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgees.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgees.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
|
|
* LDVS, WORK, LWORK, RWORK, BWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBVS, SORT
|
|
* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL BWORK( * )
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
* LOGICAL SELECT
|
|
* EXTERNAL SELECT
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
|
|
*> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
|
|
*> vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
|
|
*>
|
|
*> Optionally, it also orders the eigenvalues on the diagonal of the
|
|
*> Schur form so that selected eigenvalues are at the top left.
|
|
*> The leading columns of Z then form an orthonormal basis for the
|
|
*> invariant subspace corresponding to the selected eigenvalues.
|
|
*>
|
|
*> A complex matrix is in Schur form if it is upper triangular.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBVS
|
|
*> \verbatim
|
|
*> JOBVS is CHARACTER*1
|
|
*> = 'N': Schur vectors are not computed;
|
|
*> = 'V': Schur vectors are computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SORT
|
|
*> \verbatim
|
|
*> SORT is CHARACTER*1
|
|
*> Specifies whether or not to order the eigenvalues on the
|
|
*> diagonal of the Schur form.
|
|
*> = 'N': Eigenvalues are not ordered:
|
|
*> = 'S': Eigenvalues are ordered (see SELECT).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELECT
|
|
*> \verbatim
|
|
*> SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument
|
|
*> SELECT must be declared EXTERNAL in the calling subroutine.
|
|
*> If SORT = 'S', SELECT is used to select eigenvalues to order
|
|
*> to the top left of the Schur form.
|
|
*> IF SORT = 'N', SELECT is not referenced.
|
|
*> The eigenvalue W(j) is selected if SELECT(W(j)) is true.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the N-by-N matrix A.
|
|
*> On exit, A has been overwritten by its Schur form T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SDIM
|
|
*> \verbatim
|
|
*> SDIM is INTEGER
|
|
*> If SORT = 'N', SDIM = 0.
|
|
*> If SORT = 'S', SDIM = number of eigenvalues for which
|
|
*> SELECT is true.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is COMPLEX*16 array, dimension (N)
|
|
*> W contains the computed eigenvalues, in the same order that
|
|
*> they appear on the diagonal of the output Schur form T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VS
|
|
*> \verbatim
|
|
*> VS is COMPLEX*16 array, dimension (LDVS,N)
|
|
*> If JOBVS = 'V', VS contains the unitary matrix Z of Schur
|
|
*> vectors.
|
|
*> If JOBVS = 'N', VS is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVS
|
|
*> \verbatim
|
|
*> LDVS is INTEGER
|
|
*> The leading dimension of the array VS. LDVS >= 1; if
|
|
*> JOBVS = 'V', LDVS >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,2*N).
|
|
*> For good performance, LWORK must generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BWORK
|
|
*> \verbatim
|
|
*> BWORK is LOGICAL array, dimension (N)
|
|
*> Not referenced if SORT = 'N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = i, and i is
|
|
*> <= N: the QR algorithm failed to compute all the
|
|
*> eigenvalues; elements 1:ILO-1 and i+1:N of W
|
|
*> contain those eigenvalues which have converged;
|
|
*> if JOBVS = 'V', VS contains the matrix which
|
|
*> reduces A to its partially converged Schur form.
|
|
*> = N+1: the eigenvalues could not be reordered because
|
|
*> some eigenvalues were too close to separate (the
|
|
*> problem is very ill-conditioned);
|
|
*> = N+2: after reordering, roundoff changed values of
|
|
*> some complex eigenvalues so that leading
|
|
*> eigenvalues in the Schur form no longer satisfy
|
|
*> SELECT = .TRUE.. This could also be caused by
|
|
*> underflow due to scaling.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
|
|
$ LDVS, WORK, LWORK, RWORK, BWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBVS, SORT
|
|
INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL BWORK( * )
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
|
|
* ..
|
|
* .. Function Arguments ..
|
|
LOGICAL SELECT
|
|
EXTERNAL SELECT
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, SCALEA, WANTST, WANTVS
|
|
INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
|
|
$ ITAU, IWRK, MAXWRK, MINWRK
|
|
DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
DOUBLE PRECISION DUM( 1 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZCOPY, ZGEBAK, ZGEBAL, ZGEHRD,
|
|
$ ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
WANTVS = LSAME( JOBVS, 'V' )
|
|
WANTST = LSAME( SORT, 'S' )
|
|
IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
|
|
INFO = -10
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* CWorkspace refers to complex workspace, and RWorkspace to real
|
|
* workspace. NB refers to the optimal block size for the
|
|
* immediately following subroutine, as returned by ILAENV.
|
|
* HSWORK refers to the workspace preferred by ZHSEQR, as
|
|
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
|
|
* the worst case.)
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( N.EQ.0 ) THEN
|
|
MINWRK = 1
|
|
MAXWRK = 1
|
|
ELSE
|
|
MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
|
|
MINWRK = 2*N
|
|
*
|
|
CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
|
|
$ WORK, -1, IEVAL )
|
|
HSWORK = INT( WORK( 1 ) )
|
|
*
|
|
IF( .NOT.WANTVS ) THEN
|
|
MAXWRK = MAX( MAXWRK, HSWORK )
|
|
ELSE
|
|
MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
|
|
$ ' ', N, 1, N, -1 ) )
|
|
MAXWRK = MAX( MAXWRK, HSWORK )
|
|
END IF
|
|
END IF
|
|
WORK( 1 ) = MAXWRK
|
|
*
|
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
|
|
INFO = -12
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGEES ', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
SDIM = 0
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
|
|
SCALEA = .FALSE.
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = SMLNUM
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = BIGNUM
|
|
END IF
|
|
IF( SCALEA )
|
|
$ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
|
|
*
|
|
* Permute the matrix to make it more nearly triangular
|
|
* (CWorkspace: none)
|
|
* (RWorkspace: need N)
|
|
*
|
|
IBAL = 1
|
|
CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
|
|
*
|
|
* Reduce to upper Hessenberg form
|
|
* (CWorkspace: need 2*N, prefer N+N*NB)
|
|
* (RWorkspace: none)
|
|
*
|
|
ITAU = 1
|
|
IWRK = N + ITAU
|
|
CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
*
|
|
IF( WANTVS ) THEN
|
|
*
|
|
* Copy Householder vectors to VS
|
|
*
|
|
CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
|
|
*
|
|
* Generate unitary matrix in VS
|
|
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
|
|
* (RWorkspace: none)
|
|
*
|
|
CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
END IF
|
|
*
|
|
SDIM = 0
|
|
*
|
|
* Perform QR iteration, accumulating Schur vectors in VS if desired
|
|
* (CWorkspace: need 1, prefer HSWORK (see comments) )
|
|
* (RWorkspace: none)
|
|
*
|
|
IWRK = ITAU
|
|
CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
|
|
$ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
|
|
IF( IEVAL.GT.0 )
|
|
$ INFO = IEVAL
|
|
*
|
|
* Sort eigenvalues if desired
|
|
*
|
|
IF( WANTST .AND. INFO.EQ.0 ) THEN
|
|
IF( SCALEA )
|
|
$ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
|
|
DO 10 I = 1, N
|
|
BWORK( I ) = SELECT( W( I ) )
|
|
10 CONTINUE
|
|
*
|
|
* Reorder eigenvalues and transform Schur vectors
|
|
* (CWorkspace: none)
|
|
* (RWorkspace: none)
|
|
*
|
|
CALL ZTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
|
|
$ S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
|
|
END IF
|
|
*
|
|
IF( WANTVS ) THEN
|
|
*
|
|
* Undo balancing
|
|
* (CWorkspace: none)
|
|
* (RWorkspace: need N)
|
|
*
|
|
CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
|
|
$ IERR )
|
|
END IF
|
|
*
|
|
IF( SCALEA ) THEN
|
|
*
|
|
* Undo scaling for the Schur form of A
|
|
*
|
|
CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
|
|
CALL ZCOPY( N, A, LDA+1, W, 1 )
|
|
END IF
|
|
*
|
|
WORK( 1 ) = MAXWRK
|
|
RETURN
|
|
*
|
|
* End of ZGEES
|
|
*
|
|
END
|
|
|