You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
674 lines
22 KiB
674 lines
22 KiB
*> \brief \b ZHBTRD
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZHBTRD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbtrd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbtrd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbtrd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
|
|
* WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO, VECT
|
|
* INTEGER INFO, KD, LDAB, LDQ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * )
|
|
* COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
|
|
*> tridiagonal form T by a unitary similarity transformation:
|
|
*> Q**H * A * Q = T.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] VECT
|
|
*> \verbatim
|
|
*> VECT is CHARACTER*1
|
|
*> = 'N': do not form Q;
|
|
*> = 'V': form Q;
|
|
*> = 'U': update a matrix X, by forming X*Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
|
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
|
*> On entry, the upper or lower triangle of the Hermitian band
|
|
*> matrix A, stored in the first KD+1 rows of the array. The
|
|
*> j-th column of A is stored in the j-th column of the array AB
|
|
*> as follows:
|
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*> On exit, the diagonal elements of AB are overwritten by the
|
|
*> diagonal elements of the tridiagonal matrix T; if KD > 0, the
|
|
*> elements on the first superdiagonal (if UPLO = 'U') or the
|
|
*> first subdiagonal (if UPLO = 'L') are overwritten by the
|
|
*> off-diagonal elements of T; the rest of AB is overwritten by
|
|
*> values generated during the reduction.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal elements of the tridiagonal matrix T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The off-diagonal elements of the tridiagonal matrix T:
|
|
*> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX*16 array, dimension (LDQ,N)
|
|
*> On entry, if VECT = 'U', then Q must contain an N-by-N
|
|
*> matrix X; if VECT = 'N' or 'V', then Q need not be set.
|
|
*>
|
|
*> On exit:
|
|
*> if VECT = 'V', Q contains the N-by-N unitary matrix Q;
|
|
*> if VECT = 'U', Q contains the product X*Q;
|
|
*> if VECT = 'N', the array Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q.
|
|
*> LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Modified by Linda Kaufman, Bell Labs.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
|
|
$ WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO, VECT
|
|
INTEGER INFO, KD, LDAB, LDQ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * )
|
|
COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO
|
|
PARAMETER ( ZERO = 0.0D+0 )
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL INITQ, UPPER, WANTQ
|
|
INTEGER I, I2, IBL, INCA, INCX, IQAEND, IQB, IQEND, J,
|
|
$ J1, J1END, J1INC, J2, JEND, JIN, JINC, K, KD1,
|
|
$ KDM1, KDN, L, LAST, LEND, NQ, NR, NRT
|
|
DOUBLE PRECISION ABST
|
|
COMPLEX*16 T, TEMP
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZLACGV, ZLAR2V, ZLARGV, ZLARTG, ZLARTV,
|
|
$ ZLASET, ZROT, ZSCAL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DCONJG, MAX, MIN
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INITQ = LSAME( VECT, 'V' )
|
|
WANTQ = INITQ .OR. LSAME( VECT, 'U' )
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
KD1 = KD + 1
|
|
KDM1 = KD - 1
|
|
INCX = LDAB - 1
|
|
IQEND = 1
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( KD.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDAB.LT.KD1 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZHBTRD', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Initialize Q to the unit matrix, if needed
|
|
*
|
|
IF( INITQ )
|
|
$ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
|
|
*
|
|
* Wherever possible, plane rotations are generated and applied in
|
|
* vector operations of length NR over the index set J1:J2:KD1.
|
|
*
|
|
* The real cosines and complex sines of the plane rotations are
|
|
* stored in the arrays D and WORK.
|
|
*
|
|
INCA = KD1*LDAB
|
|
KDN = MIN( N-1, KD )
|
|
IF( UPPER ) THEN
|
|
*
|
|
IF( KD.GT.1 ) THEN
|
|
*
|
|
* Reduce to complex Hermitian tridiagonal form, working with
|
|
* the upper triangle
|
|
*
|
|
NR = 0
|
|
J1 = KDN + 2
|
|
J2 = 1
|
|
*
|
|
AB( KD1, 1 ) = DBLE( AB( KD1, 1 ) )
|
|
DO 90 I = 1, N - 2
|
|
*
|
|
* Reduce i-th row of matrix to tridiagonal form
|
|
*
|
|
DO 80 K = KDN + 1, 2, -1
|
|
J1 = J1 + KDN
|
|
J2 = J2 + KDN
|
|
*
|
|
IF( NR.GT.0 ) THEN
|
|
*
|
|
* generate plane rotations to annihilate nonzero
|
|
* elements which have been created outside the band
|
|
*
|
|
CALL ZLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ),
|
|
$ KD1, D( J1 ), KD1 )
|
|
*
|
|
* apply rotations from the right
|
|
*
|
|
*
|
|
* Dependent on the the number of diagonals either
|
|
* ZLARTV or ZROT is used
|
|
*
|
|
IF( NR.GE.2*KD-1 ) THEN
|
|
DO 10 L = 1, KD - 1
|
|
CALL ZLARTV( NR, AB( L+1, J1-1 ), INCA,
|
|
$ AB( L, J1 ), INCA, D( J1 ),
|
|
$ WORK( J1 ), KD1 )
|
|
10 CONTINUE
|
|
*
|
|
ELSE
|
|
JEND = J1 + ( NR-1 )*KD1
|
|
DO 20 JINC = J1, JEND, KD1
|
|
CALL ZROT( KDM1, AB( 2, JINC-1 ), 1,
|
|
$ AB( 1, JINC ), 1, D( JINC ),
|
|
$ WORK( JINC ) )
|
|
20 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
*
|
|
IF( K.GT.2 ) THEN
|
|
IF( K.LE.N-I+1 ) THEN
|
|
*
|
|
* generate plane rotation to annihilate a(i,i+k-1)
|
|
* within the band
|
|
*
|
|
CALL ZLARTG( AB( KD-K+3, I+K-2 ),
|
|
$ AB( KD-K+2, I+K-1 ), D( I+K-1 ),
|
|
$ WORK( I+K-1 ), TEMP )
|
|
AB( KD-K+3, I+K-2 ) = TEMP
|
|
*
|
|
* apply rotation from the right
|
|
*
|
|
CALL ZROT( K-3, AB( KD-K+4, I+K-2 ), 1,
|
|
$ AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ),
|
|
$ WORK( I+K-1 ) )
|
|
END IF
|
|
NR = NR + 1
|
|
J1 = J1 - KDN - 1
|
|
END IF
|
|
*
|
|
* apply plane rotations from both sides to diagonal
|
|
* blocks
|
|
*
|
|
IF( NR.GT.0 )
|
|
$ CALL ZLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ),
|
|
$ AB( KD, J1 ), INCA, D( J1 ),
|
|
$ WORK( J1 ), KD1 )
|
|
*
|
|
* apply plane rotations from the left
|
|
*
|
|
IF( NR.GT.0 ) THEN
|
|
CALL ZLACGV( NR, WORK( J1 ), KD1 )
|
|
IF( 2*KD-1.LT.NR ) THEN
|
|
*
|
|
* Dependent on the the number of diagonals either
|
|
* ZLARTV or ZROT is used
|
|
*
|
|
DO 30 L = 1, KD - 1
|
|
IF( J2+L.GT.N ) THEN
|
|
NRT = NR - 1
|
|
ELSE
|
|
NRT = NR
|
|
END IF
|
|
IF( NRT.GT.0 )
|
|
$ CALL ZLARTV( NRT, AB( KD-L, J1+L ), INCA,
|
|
$ AB( KD-L+1, J1+L ), INCA,
|
|
$ D( J1 ), WORK( J1 ), KD1 )
|
|
30 CONTINUE
|
|
ELSE
|
|
J1END = J1 + KD1*( NR-2 )
|
|
IF( J1END.GE.J1 ) THEN
|
|
DO 40 JIN = J1, J1END, KD1
|
|
CALL ZROT( KD-1, AB( KD-1, JIN+1 ), INCX,
|
|
$ AB( KD, JIN+1 ), INCX,
|
|
$ D( JIN ), WORK( JIN ) )
|
|
40 CONTINUE
|
|
END IF
|
|
LEND = MIN( KDM1, N-J2 )
|
|
LAST = J1END + KD1
|
|
IF( LEND.GT.0 )
|
|
$ CALL ZROT( LEND, AB( KD-1, LAST+1 ), INCX,
|
|
$ AB( KD, LAST+1 ), INCX, D( LAST ),
|
|
$ WORK( LAST ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* accumulate product of plane rotations in Q
|
|
*
|
|
IF( INITQ ) THEN
|
|
*
|
|
* take advantage of the fact that Q was
|
|
* initially the Identity matrix
|
|
*
|
|
IQEND = MAX( IQEND, J2 )
|
|
I2 = MAX( 0, K-3 )
|
|
IQAEND = 1 + I*KD
|
|
IF( K.EQ.2 )
|
|
$ IQAEND = IQAEND + KD
|
|
IQAEND = MIN( IQAEND, IQEND )
|
|
DO 50 J = J1, J2, KD1
|
|
IBL = I - I2 / KDM1
|
|
I2 = I2 + 1
|
|
IQB = MAX( 1, J-IBL )
|
|
NQ = 1 + IQAEND - IQB
|
|
IQAEND = MIN( IQAEND+KD, IQEND )
|
|
CALL ZROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
|
|
$ 1, D( J ), DCONJG( WORK( J ) ) )
|
|
50 CONTINUE
|
|
ELSE
|
|
*
|
|
DO 60 J = J1, J2, KD1
|
|
CALL ZROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
|
|
$ D( J ), DCONJG( WORK( J ) ) )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
IF( J2+KDN.GT.N ) THEN
|
|
*
|
|
* adjust J2 to keep within the bounds of the matrix
|
|
*
|
|
NR = NR - 1
|
|
J2 = J2 - KDN - 1
|
|
END IF
|
|
*
|
|
DO 70 J = J1, J2, KD1
|
|
*
|
|
* create nonzero element a(j-1,j+kd) outside the band
|
|
* and store it in WORK
|
|
*
|
|
WORK( J+KD ) = WORK( J )*AB( 1, J+KD )
|
|
AB( 1, J+KD ) = D( J )*AB( 1, J+KD )
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
END IF
|
|
*
|
|
IF( KD.GT.0 ) THEN
|
|
*
|
|
* make off-diagonal elements real and copy them to E
|
|
*
|
|
DO 100 I = 1, N - 1
|
|
T = AB( KD, I+1 )
|
|
ABST = ABS( T )
|
|
AB( KD, I+1 ) = ABST
|
|
E( I ) = ABST
|
|
IF( ABST.NE.ZERO ) THEN
|
|
T = T / ABST
|
|
ELSE
|
|
T = CONE
|
|
END IF
|
|
IF( I.LT.N-1 )
|
|
$ AB( KD, I+2 ) = AB( KD, I+2 )*T
|
|
IF( WANTQ ) THEN
|
|
CALL ZSCAL( N, DCONJG( T ), Q( 1, I+1 ), 1 )
|
|
END IF
|
|
100 CONTINUE
|
|
ELSE
|
|
*
|
|
* set E to zero if original matrix was diagonal
|
|
*
|
|
DO 110 I = 1, N - 1
|
|
E( I ) = ZERO
|
|
110 CONTINUE
|
|
END IF
|
|
*
|
|
* copy diagonal elements to D
|
|
*
|
|
DO 120 I = 1, N
|
|
D( I ) = DBLE( AB( KD1, I ) )
|
|
120 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
IF( KD.GT.1 ) THEN
|
|
*
|
|
* Reduce to complex Hermitian tridiagonal form, working with
|
|
* the lower triangle
|
|
*
|
|
NR = 0
|
|
J1 = KDN + 2
|
|
J2 = 1
|
|
*
|
|
AB( 1, 1 ) = DBLE( AB( 1, 1 ) )
|
|
DO 210 I = 1, N - 2
|
|
*
|
|
* Reduce i-th column of matrix to tridiagonal form
|
|
*
|
|
DO 200 K = KDN + 1, 2, -1
|
|
J1 = J1 + KDN
|
|
J2 = J2 + KDN
|
|
*
|
|
IF( NR.GT.0 ) THEN
|
|
*
|
|
* generate plane rotations to annihilate nonzero
|
|
* elements which have been created outside the band
|
|
*
|
|
CALL ZLARGV( NR, AB( KD1, J1-KD1 ), INCA,
|
|
$ WORK( J1 ), KD1, D( J1 ), KD1 )
|
|
*
|
|
* apply plane rotations from one side
|
|
*
|
|
*
|
|
* Dependent on the the number of diagonals either
|
|
* ZLARTV or ZROT is used
|
|
*
|
|
IF( NR.GT.2*KD-1 ) THEN
|
|
DO 130 L = 1, KD - 1
|
|
CALL ZLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA,
|
|
$ AB( KD1-L+1, J1-KD1+L ), INCA,
|
|
$ D( J1 ), WORK( J1 ), KD1 )
|
|
130 CONTINUE
|
|
ELSE
|
|
JEND = J1 + KD1*( NR-1 )
|
|
DO 140 JINC = J1, JEND, KD1
|
|
CALL ZROT( KDM1, AB( KD, JINC-KD ), INCX,
|
|
$ AB( KD1, JINC-KD ), INCX,
|
|
$ D( JINC ), WORK( JINC ) )
|
|
140 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
IF( K.GT.2 ) THEN
|
|
IF( K.LE.N-I+1 ) THEN
|
|
*
|
|
* generate plane rotation to annihilate a(i+k-1,i)
|
|
* within the band
|
|
*
|
|
CALL ZLARTG( AB( K-1, I ), AB( K, I ),
|
|
$ D( I+K-1 ), WORK( I+K-1 ), TEMP )
|
|
AB( K-1, I ) = TEMP
|
|
*
|
|
* apply rotation from the left
|
|
*
|
|
CALL ZROT( K-3, AB( K-2, I+1 ), LDAB-1,
|
|
$ AB( K-1, I+1 ), LDAB-1, D( I+K-1 ),
|
|
$ WORK( I+K-1 ) )
|
|
END IF
|
|
NR = NR + 1
|
|
J1 = J1 - KDN - 1
|
|
END IF
|
|
*
|
|
* apply plane rotations from both sides to diagonal
|
|
* blocks
|
|
*
|
|
IF( NR.GT.0 )
|
|
$ CALL ZLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ),
|
|
$ AB( 2, J1-1 ), INCA, D( J1 ),
|
|
$ WORK( J1 ), KD1 )
|
|
*
|
|
* apply plane rotations from the right
|
|
*
|
|
*
|
|
* Dependent on the the number of diagonals either
|
|
* ZLARTV or ZROT is used
|
|
*
|
|
IF( NR.GT.0 ) THEN
|
|
CALL ZLACGV( NR, WORK( J1 ), KD1 )
|
|
IF( NR.GT.2*KD-1 ) THEN
|
|
DO 150 L = 1, KD - 1
|
|
IF( J2+L.GT.N ) THEN
|
|
NRT = NR - 1
|
|
ELSE
|
|
NRT = NR
|
|
END IF
|
|
IF( NRT.GT.0 )
|
|
$ CALL ZLARTV( NRT, AB( L+2, J1-1 ), INCA,
|
|
$ AB( L+1, J1 ), INCA, D( J1 ),
|
|
$ WORK( J1 ), KD1 )
|
|
150 CONTINUE
|
|
ELSE
|
|
J1END = J1 + KD1*( NR-2 )
|
|
IF( J1END.GE.J1 ) THEN
|
|
DO 160 J1INC = J1, J1END, KD1
|
|
CALL ZROT( KDM1, AB( 3, J1INC-1 ), 1,
|
|
$ AB( 2, J1INC ), 1, D( J1INC ),
|
|
$ WORK( J1INC ) )
|
|
160 CONTINUE
|
|
END IF
|
|
LEND = MIN( KDM1, N-J2 )
|
|
LAST = J1END + KD1
|
|
IF( LEND.GT.0 )
|
|
$ CALL ZROT( LEND, AB( 3, LAST-1 ), 1,
|
|
$ AB( 2, LAST ), 1, D( LAST ),
|
|
$ WORK( LAST ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
*
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* accumulate product of plane rotations in Q
|
|
*
|
|
IF( INITQ ) THEN
|
|
*
|
|
* take advantage of the fact that Q was
|
|
* initially the Identity matrix
|
|
*
|
|
IQEND = MAX( IQEND, J2 )
|
|
I2 = MAX( 0, K-3 )
|
|
IQAEND = 1 + I*KD
|
|
IF( K.EQ.2 )
|
|
$ IQAEND = IQAEND + KD
|
|
IQAEND = MIN( IQAEND, IQEND )
|
|
DO 170 J = J1, J2, KD1
|
|
IBL = I - I2 / KDM1
|
|
I2 = I2 + 1
|
|
IQB = MAX( 1, J-IBL )
|
|
NQ = 1 + IQAEND - IQB
|
|
IQAEND = MIN( IQAEND+KD, IQEND )
|
|
CALL ZROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
|
|
$ 1, D( J ), WORK( J ) )
|
|
170 CONTINUE
|
|
ELSE
|
|
*
|
|
DO 180 J = J1, J2, KD1
|
|
CALL ZROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
|
|
$ D( J ), WORK( J ) )
|
|
180 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( J2+KDN.GT.N ) THEN
|
|
*
|
|
* adjust J2 to keep within the bounds of the matrix
|
|
*
|
|
NR = NR - 1
|
|
J2 = J2 - KDN - 1
|
|
END IF
|
|
*
|
|
DO 190 J = J1, J2, KD1
|
|
*
|
|
* create nonzero element a(j+kd,j-1) outside the
|
|
* band and store it in WORK
|
|
*
|
|
WORK( J+KD ) = WORK( J )*AB( KD1, J )
|
|
AB( KD1, J ) = D( J )*AB( KD1, J )
|
|
190 CONTINUE
|
|
200 CONTINUE
|
|
210 CONTINUE
|
|
END IF
|
|
*
|
|
IF( KD.GT.0 ) THEN
|
|
*
|
|
* make off-diagonal elements real and copy them to E
|
|
*
|
|
DO 220 I = 1, N - 1
|
|
T = AB( 2, I )
|
|
ABST = ABS( T )
|
|
AB( 2, I ) = ABST
|
|
E( I ) = ABST
|
|
IF( ABST.NE.ZERO ) THEN
|
|
T = T / ABST
|
|
ELSE
|
|
T = CONE
|
|
END IF
|
|
IF( I.LT.N-1 )
|
|
$ AB( 2, I+1 ) = AB( 2, I+1 )*T
|
|
IF( WANTQ ) THEN
|
|
CALL ZSCAL( N, T, Q( 1, I+1 ), 1 )
|
|
END IF
|
|
220 CONTINUE
|
|
ELSE
|
|
*
|
|
* set E to zero if original matrix was diagonal
|
|
*
|
|
DO 230 I = 1, N - 1
|
|
E( I ) = ZERO
|
|
230 CONTINUE
|
|
END IF
|
|
*
|
|
* copy diagonal elements to D
|
|
*
|
|
DO 240 I = 1, N
|
|
D( I ) = DBLE( AB( 1, I ) )
|
|
240 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHBTRD
|
|
*
|
|
END
|
|
|