You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
389 lines
12 KiB
389 lines
12 KiB
*> \brief <b> ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZHEEVD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
|
|
* LRWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, UPLO
|
|
* INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION RWORK( * ), W( * )
|
|
* COMPLEX*16 A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
|
|
*> complex Hermitian matrix A. If eigenvectors are desired, it uses a
|
|
*> divide and conquer algorithm.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only;
|
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
|
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
|
|
*> leading N-by-N upper triangular part of A contains the
|
|
*> upper triangular part of the matrix A. If UPLO = 'L',
|
|
*> the leading N-by-N lower triangular part of A contains
|
|
*> the lower triangular part of the matrix A.
|
|
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
|
|
*> orthonormal eigenvectors of the matrix A.
|
|
*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
|
|
*> or the upper triangle (if UPLO='U') of A, including the
|
|
*> diagonal, is destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is DOUBLE PRECISION array, dimension (N)
|
|
*> If INFO = 0, the eigenvalues in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK.
|
|
*> If N <= 1, LWORK must be at least 1.
|
|
*> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
|
|
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal sizes of the WORK, RWORK and
|
|
*> IWORK arrays, returns these values as the first entries of
|
|
*> the WORK, RWORK and IWORK arrays, and no error message
|
|
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array,
|
|
*> dimension (LRWORK)
|
|
*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LRWORK
|
|
*> \verbatim
|
|
*> LRWORK is INTEGER
|
|
*> The dimension of the array RWORK.
|
|
*> If N <= 1, LRWORK must be at least 1.
|
|
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
|
|
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
|
|
*> 1 + 5*N + 2*N**2.
|
|
*>
|
|
*> If LRWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal sizes of the WORK, RWORK
|
|
*> and IWORK arrays, returns these values as the first entries
|
|
*> of the WORK, RWORK and IWORK arrays, and no error message
|
|
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK.
|
|
*> If N <= 1, LIWORK must be at least 1.
|
|
*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
|
|
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
|
|
*>
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal sizes of the WORK, RWORK
|
|
*> and IWORK arrays, returns these values as the first entries
|
|
*> of the WORK, RWORK and IWORK arrays, and no error message
|
|
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
|
|
*> to converge; i off-diagonal elements of an intermediate
|
|
*> tridiagonal form did not converge to zero;
|
|
*> if INFO = i and JOBZ = 'V', then the algorithm failed
|
|
*> to compute an eigenvalue while working on the submatrix
|
|
*> lying in rows and columns INFO/(N+1) through
|
|
*> mod(INFO,N+1).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16HEeigen
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> Modified description of INFO. Sven, 16 Feb 05.
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
|
|
$ LRWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, UPLO
|
|
INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION RWORK( * ), W( * )
|
|
COMPLEX*16 A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
COMPLEX*16 CONE
|
|
PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER, LQUERY, WANTZ
|
|
INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
|
|
$ INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
|
|
$ LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
|
|
DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
|
|
$ SMLNUM
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, ZLANHE
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANHE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
|
|
$ ZSTEDC, ZUNMTR
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( N.LE.1 ) THEN
|
|
LWMIN = 1
|
|
LRWMIN = 1
|
|
LIWMIN = 1
|
|
LOPT = LWMIN
|
|
LROPT = LRWMIN
|
|
LIOPT = LIWMIN
|
|
ELSE
|
|
IF( WANTZ ) THEN
|
|
LWMIN = 2*N + N*N
|
|
LRWMIN = 1 + 5*N + 2*N**2
|
|
LIWMIN = 3 + 5*N
|
|
ELSE
|
|
LWMIN = N + 1
|
|
LRWMIN = N
|
|
LIWMIN = 1
|
|
END IF
|
|
LOPT = MAX( LWMIN, N +
|
|
$ N*ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
|
|
LROPT = LRWMIN
|
|
LIOPT = LIWMIN
|
|
END IF
|
|
WORK( 1 ) = LOPT
|
|
RWORK( 1 ) = LROPT
|
|
IWORK( 1 ) = LIOPT
|
|
*
|
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -8
|
|
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -10
|
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -12
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZHEEVD', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
W( 1 ) = DBLE( A( 1, 1 ) )
|
|
IF( WANTZ )
|
|
$ A( 1, 1 ) = CONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants.
|
|
*
|
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
|
EPS = DLAMCH( 'Precision' )
|
|
SMLNUM = SAFMIN / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
RMIN = SQRT( SMLNUM )
|
|
RMAX = SQRT( BIGNUM )
|
|
*
|
|
* Scale matrix to allowable range, if necessary.
|
|
*
|
|
ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
|
|
ISCALE = 0
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMIN / ANRM
|
|
ELSE IF( ANRM.GT.RMAX ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMAX / ANRM
|
|
END IF
|
|
IF( ISCALE.EQ.1 )
|
|
$ CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
|
|
*
|
|
* Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
|
|
*
|
|
INDE = 1
|
|
INDTAU = 1
|
|
INDWRK = INDTAU + N
|
|
INDRWK = INDE + N
|
|
INDWK2 = INDWRK + N*N
|
|
LLWORK = LWORK - INDWRK + 1
|
|
LLWRK2 = LWORK - INDWK2 + 1
|
|
LLRWK = LRWORK - INDRWK + 1
|
|
CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
|
|
$ WORK( INDWRK ), LLWORK, IINFO )
|
|
*
|
|
* For eigenvalues only, call DSTERF. For eigenvectors, first call
|
|
* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
|
|
* tridiagonal matrix, then call ZUNMTR to multiply it to the
|
|
* Householder transformations represented as Householder vectors in
|
|
* A.
|
|
*
|
|
IF( .NOT.WANTZ ) THEN
|
|
CALL DSTERF( N, W, RWORK( INDE ), INFO )
|
|
ELSE
|
|
CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
|
|
$ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
|
|
$ IWORK, LIWORK, INFO )
|
|
CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
|
|
$ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
|
|
CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
|
|
END IF
|
|
*
|
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
|
*
|
|
IF( ISCALE.EQ.1 ) THEN
|
|
IF( INFO.EQ.0 ) THEN
|
|
IMAX = N
|
|
ELSE
|
|
IMAX = INFO - 1
|
|
END IF
|
|
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
|
|
END IF
|
|
*
|
|
WORK( 1 ) = LOPT
|
|
RWORK( 1 ) = LROPT
|
|
IWORK( 1 ) = LIOPT
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHEEVD
|
|
*
|
|
END
|
|
|