You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
343 lines
9.6 KiB
343 lines
9.6 KiB
*> \brief \b ZLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded matrices.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLA_GBRCOND_C + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrcond_c.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB,
|
|
* LDAB, AFB, LDAFB, IPIV,
|
|
* C, CAPPLY, INFO, WORK,
|
|
* RWORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANS
|
|
* LOGICAL CAPPLY
|
|
* INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
|
|
* DOUBLE PRECISION C( * ), RWORK( * )
|
|
*
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLA_GBRCOND_C Computes the infinity norm condition number of
|
|
*> op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies the form of the system of equations:
|
|
*> = 'N': A * X = B (No transpose)
|
|
*> = 'T': A**T * X = B (Transpose)
|
|
*> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of linear equations, i.e., the order of the
|
|
*> matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
|
*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
|
|
*> The j-th column of A is stored in the j-th column of the
|
|
*> array AB as follows:
|
|
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AFB
|
|
*> \verbatim
|
|
*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
|
|
*> Details of the LU factorization of the band matrix A, as
|
|
*> computed by ZGBTRF. U is stored as an upper triangular
|
|
*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
|
|
*> and the multipliers used during the factorization are stored
|
|
*> in rows KL+KU+2 to 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAFB
|
|
*> \verbatim
|
|
*> LDAFB is INTEGER
|
|
*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices from the factorization A = P*L*U
|
|
*> as computed by ZGBTRF; row i of the matrix was interchanged
|
|
*> with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array, dimension (N)
|
|
*> The vector C in the formula op(A) * inv(diag(C)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CAPPLY
|
|
*> \verbatim
|
|
*> CAPPLY is LOGICAL
|
|
*> If .TRUE. then access the vector C in the formula above.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: Successful exit.
|
|
*> i > 0: The ith argument is invalid.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (2*N).
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N).
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GBcomputational
|
|
*
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB,
|
|
$ LDAB, AFB, LDAFB, IPIV,
|
|
$ C, CAPPLY, INFO, WORK,
|
|
$ RWORK )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANS
|
|
LOGICAL CAPPLY
|
|
INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
|
|
DOUBLE PRECISION C( * ), RWORK( * )
|
|
*
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL NOTRANS
|
|
INTEGER KASE, I, J
|
|
DOUBLE PRECISION AINVNM, ANORM, TMP
|
|
COMPLEX*16 ZDUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISAVE( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLACN2, ZGBTRS, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function Definitions ..
|
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
ZLA_GBRCOND_C = 0.0D+0
|
|
*
|
|
INFO = 0
|
|
NOTRANS = LSAME( TRANS, 'N' )
|
|
IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
|
|
$ LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
|
|
INFO = -3
|
|
ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
|
|
INFO = -8
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZLA_GBRCOND_C', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute norm of op(A)*op2(C).
|
|
*
|
|
ANORM = 0.0D+0
|
|
KD = KU + 1
|
|
KE = KL + 1
|
|
IF ( NOTRANS ) THEN
|
|
DO I = 1, N
|
|
TMP = 0.0D+0
|
|
IF ( CAPPLY ) THEN
|
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
|
|
TMP = TMP + CABS1( AB( KD+I-J, J ) ) / C( J )
|
|
END DO
|
|
ELSE
|
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
|
|
TMP = TMP + CABS1( AB( KD+I-J, J ) )
|
|
END DO
|
|
END IF
|
|
RWORK( I ) = TMP
|
|
ANORM = MAX( ANORM, TMP )
|
|
END DO
|
|
ELSE
|
|
DO I = 1, N
|
|
TMP = 0.0D+0
|
|
IF ( CAPPLY ) THEN
|
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
|
|
TMP = TMP + CABS1( AB( KE-I+J, I ) ) / C( J )
|
|
END DO
|
|
ELSE
|
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
|
|
TMP = TMP + CABS1( AB( KE-I+J, I ) )
|
|
END DO
|
|
END IF
|
|
RWORK( I ) = TMP
|
|
ANORM = MAX( ANORM, TMP )
|
|
END DO
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
ZLA_GBRCOND_C = 1.0D+0
|
|
RETURN
|
|
ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Estimate the norm of inv(op(A)).
|
|
*
|
|
AINVNM = 0.0D+0
|
|
*
|
|
KASE = 0
|
|
10 CONTINUE
|
|
CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
|
|
IF( KASE.NE.0 ) THEN
|
|
IF( KASE.EQ.2 ) THEN
|
|
*
|
|
* Multiply by R.
|
|
*
|
|
DO I = 1, N
|
|
WORK( I ) = WORK( I ) * RWORK( I )
|
|
END DO
|
|
*
|
|
IF ( NOTRANS ) THEN
|
|
CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
|
|
$ IPIV, WORK, N, INFO )
|
|
ELSE
|
|
CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
|
|
$ LDAFB, IPIV, WORK, N, INFO )
|
|
ENDIF
|
|
*
|
|
* Multiply by inv(C).
|
|
*
|
|
IF ( CAPPLY ) THEN
|
|
DO I = 1, N
|
|
WORK( I ) = WORK( I ) * C( I )
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Multiply by inv(C**H).
|
|
*
|
|
IF ( CAPPLY ) THEN
|
|
DO I = 1, N
|
|
WORK( I ) = WORK( I ) * C( I )
|
|
END DO
|
|
END IF
|
|
*
|
|
IF ( NOTRANS ) THEN
|
|
CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
|
|
$ LDAFB, IPIV, WORK, N, INFO )
|
|
ELSE
|
|
CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
|
|
$ IPIV, WORK, N, INFO )
|
|
END IF
|
|
*
|
|
* Multiply by R.
|
|
*
|
|
DO I = 1, N
|
|
WORK( I ) = WORK( I ) * RWORK( I )
|
|
END DO
|
|
END IF
|
|
GO TO 10
|
|
END IF
|
|
*
|
|
* Compute the estimate of the reciprocal condition number.
|
|
*
|
|
IF( AINVNM .NE. 0.0D+0 )
|
|
$ ZLA_GBRCOND_C = 1.0D+0 / AINVNM
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZLA_GBRCOND_C
|
|
*
|
|
END
|
|
|