You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
9.6 KiB
330 lines
9.6 KiB
*> \brief \b ZLA_HERPVGRW
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLA_HERPVGRW + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_herpvgrw.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_herpvgrw.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_herpvgrw.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
|
|
* LDAF, IPIV, WORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER*1 UPLO
|
|
* INTEGER N, INFO, LDA, LDAF
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX*16 A( LDA, * ), AF( LDAF, * )
|
|
* DOUBLE PRECISION WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*>
|
|
*> ZLA_HERPVGRW computes the reciprocal pivot growth factor
|
|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
|
|
*> much less than 1, the stability of the LU factorization of the
|
|
*> (equilibrated) matrix A could be poor. This also means that the
|
|
*> solution X, estimated condition numbers, and error bounds could be
|
|
*> unreliable.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of linear equations, i.e., the order of the
|
|
*> matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> The value of INFO returned from ZHETRF, .i.e., the pivot in
|
|
*> column INFO is exactly 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the N-by-N matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AF
|
|
*> \verbatim
|
|
*> AF is COMPLEX*16 array, dimension (LDAF,N)
|
|
*> The block diagonal matrix D and the multipliers used to
|
|
*> obtain the factor U or L as computed by ZHETRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAF
|
|
*> \verbatim
|
|
*> LDAF is INTEGER
|
|
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> Details of the interchanges and the block structure of D
|
|
*> as determined by ZHETRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (2*N)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16HEcomputational
|
|
*
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
|
|
$ LDAF, IPIV, WORK )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER*1 UPLO
|
|
INTEGER N, INFO, LDA, LDAF
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX*16 A( LDA, * ), AF( LDAF, * )
|
|
DOUBLE PRECISION WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER NCOLS, I, J, K, KP
|
|
DOUBLE PRECISION AMAX, UMAX, RPVGRW, TMP
|
|
LOGICAL UPPER, LSAME
|
|
COMPLEX*16 ZDUM
|
|
* ..
|
|
* .. External Functions ..
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, REAL, DIMAG, MAX, MIN
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function Definitions ..
|
|
CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
UPPER = LSAME( 'Upper', UPLO )
|
|
IF ( INFO.EQ.0 ) THEN
|
|
IF (UPPER) THEN
|
|
NCOLS = 1
|
|
ELSE
|
|
NCOLS = N
|
|
END IF
|
|
ELSE
|
|
NCOLS = INFO
|
|
END IF
|
|
|
|
RPVGRW = 1.0D+0
|
|
DO I = 1, 2*N
|
|
WORK( I ) = 0.0D+0
|
|
END DO
|
|
*
|
|
* Find the max magnitude entry of each column of A. Compute the max
|
|
* for all N columns so we can apply the pivot permutation while
|
|
* looping below. Assume a full factorization is the common case.
|
|
*
|
|
IF ( UPPER ) THEN
|
|
DO J = 1, N
|
|
DO I = 1, J
|
|
WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
|
|
WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
DO J = 1, N
|
|
DO I = J, N
|
|
WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
|
|
WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
|
|
END DO
|
|
END DO
|
|
END IF
|
|
*
|
|
* Now find the max magnitude entry of each column of U or L. Also
|
|
* permute the magnitudes of A above so they're in the same order as
|
|
* the factor.
|
|
*
|
|
* The iteration orders and permutations were copied from zsytrs.
|
|
* Calls to SSWAP would be severe overkill.
|
|
*
|
|
IF ( UPPER ) THEN
|
|
K = N
|
|
DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
|
|
IF ( IPIV( K ).GT.0 ) THEN
|
|
! 1x1 pivot
|
|
KP = IPIV( K )
|
|
IF ( KP .NE. K ) THEN
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
END IF
|
|
DO I = 1, K
|
|
WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
|
|
END DO
|
|
K = K - 1
|
|
ELSE
|
|
! 2x2 pivot
|
|
KP = -IPIV( K )
|
|
TMP = WORK( N+K-1 )
|
|
WORK( N+K-1 ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
DO I = 1, K-1
|
|
WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
|
|
WORK( K-1 ) =
|
|
$ MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
|
|
END DO
|
|
WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
|
|
K = K - 2
|
|
END IF
|
|
END DO
|
|
K = NCOLS
|
|
DO WHILE ( K .LE. N )
|
|
IF ( IPIV( K ).GT.0 ) THEN
|
|
KP = IPIV( K )
|
|
IF ( KP .NE. K ) THEN
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
END IF
|
|
K = K + 1
|
|
ELSE
|
|
KP = -IPIV( K )
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
K = K + 2
|
|
END IF
|
|
END DO
|
|
ELSE
|
|
K = 1
|
|
DO WHILE ( K .LE. NCOLS )
|
|
IF ( IPIV( K ).GT.0 ) THEN
|
|
! 1x1 pivot
|
|
KP = IPIV( K )
|
|
IF ( KP .NE. K ) THEN
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
END IF
|
|
DO I = K, N
|
|
WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
|
|
END DO
|
|
K = K + 1
|
|
ELSE
|
|
! 2x2 pivot
|
|
KP = -IPIV( K )
|
|
TMP = WORK( N+K+1 )
|
|
WORK( N+K+1 ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
DO I = K+1, N
|
|
WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
|
|
WORK( K+1 ) =
|
|
$ MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
|
|
END DO
|
|
WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
|
|
K = K + 2
|
|
END IF
|
|
END DO
|
|
K = NCOLS
|
|
DO WHILE ( K .GE. 1 )
|
|
IF ( IPIV( K ).GT.0 ) THEN
|
|
KP = IPIV( K )
|
|
IF ( KP .NE. K ) THEN
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
END IF
|
|
K = K - 1
|
|
ELSE
|
|
KP = -IPIV( K )
|
|
TMP = WORK( N+K )
|
|
WORK( N+K ) = WORK( N+KP )
|
|
WORK( N+KP ) = TMP
|
|
K = K - 2
|
|
ENDIF
|
|
END DO
|
|
END IF
|
|
*
|
|
* Compute the *inverse* of the max element growth factor. Dividing
|
|
* by zero would imply the largest entry of the factor's column is
|
|
* zero. Than can happen when either the column of A is zero or
|
|
* massive pivots made the factor underflow to zero. Neither counts
|
|
* as growth in itself, so simply ignore terms with zero
|
|
* denominators.
|
|
*
|
|
IF ( UPPER ) THEN
|
|
DO I = NCOLS, N
|
|
UMAX = WORK( I )
|
|
AMAX = WORK( N+I )
|
|
IF ( UMAX /= 0.0D+0 ) THEN
|
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
|
END IF
|
|
END DO
|
|
ELSE
|
|
DO I = 1, NCOLS
|
|
UMAX = WORK( I )
|
|
AMAX = WORK( N+I )
|
|
IF ( UMAX /= 0.0D+0 ) THEN
|
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
|
END IF
|
|
END DO
|
|
END IF
|
|
|
|
ZLA_HERPVGRW = RPVGRW
|
|
*
|
|
* End of ZLA_HERPVGRW
|
|
*
|
|
END
|
|
|