You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
9.4 KiB
351 lines
9.4 KiB
*> \brief \b ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLAEIN + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaein.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaein.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaein.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
|
|
* EPS3, SMLNUM, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL NOINIT, RIGHTV
|
|
* INTEGER INFO, LDB, LDH, N
|
|
* DOUBLE PRECISION EPS3, SMLNUM
|
|
* COMPLEX*16 W
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 B( LDB, * ), H( LDH, * ), V( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLAEIN uses inverse iteration to find a right or left eigenvector
|
|
*> corresponding to the eigenvalue W of a complex upper Hessenberg
|
|
*> matrix H.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] RIGHTV
|
|
*> \verbatim
|
|
*> RIGHTV is LOGICAL
|
|
*> = .TRUE. : compute right eigenvector;
|
|
*> = .FALSE.: compute left eigenvector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOINIT
|
|
*> \verbatim
|
|
*> NOINIT is LOGICAL
|
|
*> = .TRUE. : no initial vector supplied in V
|
|
*> = .FALSE.: initial vector supplied in V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix H. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] H
|
|
*> \verbatim
|
|
*> H is COMPLEX*16 array, dimension (LDH,N)
|
|
*> The upper Hessenberg matrix H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDH
|
|
*> \verbatim
|
|
*> LDH is INTEGER
|
|
*> The leading dimension of the array H. LDH >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] W
|
|
*> \verbatim
|
|
*> W is COMPLEX*16
|
|
*> The eigenvalue of H whose corresponding right or left
|
|
*> eigenvector is to be computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (N)
|
|
*> On entry, if NOINIT = .FALSE., V must contain a starting
|
|
*> vector for inverse iteration; otherwise V need not be set.
|
|
*> On exit, V contains the computed eigenvector, normalized so
|
|
*> that the component of largest magnitude has magnitude 1; here
|
|
*> the magnitude of a complex number (x,y) is taken to be
|
|
*> |x| + |y|.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDB,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] EPS3
|
|
*> \verbatim
|
|
*> EPS3 is DOUBLE PRECISION
|
|
*> A small machine-dependent value which is used to perturb
|
|
*> close eigenvalues, and to replace zero pivots.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SMLNUM
|
|
*> \verbatim
|
|
*> SMLNUM is DOUBLE PRECISION
|
|
*> A machine-dependent value close to the underflow threshold.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> = 1: inverse iteration did not converge; V is set to the
|
|
*> last iterate.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
|
|
$ EPS3, SMLNUM, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL NOINIT, RIGHTV
|
|
INTEGER INFO, LDB, LDH, N
|
|
DOUBLE PRECISION EPS3, SMLNUM
|
|
COMPLEX*16 W
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 B( LDB, * ), H( LDH, * ), V( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, TENTH
|
|
PARAMETER ( ONE = 1.0D+0, TENTH = 1.0D-1 )
|
|
COMPLEX*16 ZERO
|
|
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER NORMIN, TRANS
|
|
INTEGER I, IERR, ITS, J
|
|
DOUBLE PRECISION GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
|
|
COMPLEX*16 CDUM, EI, EJ, TEMP, X
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER IZAMAX
|
|
DOUBLE PRECISION DZASUM, DZNRM2
|
|
COMPLEX*16 ZLADIV
|
|
EXTERNAL IZAMAX, DZASUM, DZNRM2, ZLADIV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZDSCAL, ZLATRS
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* GROWTO is the threshold used in the acceptance test for an
|
|
* eigenvector.
|
|
*
|
|
ROOTN = SQRT( DBLE( N ) )
|
|
GROWTO = TENTH / ROOTN
|
|
NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
|
|
*
|
|
* Form B = H - W*I (except that the subdiagonal elements are not
|
|
* stored).
|
|
*
|
|
DO 20 J = 1, N
|
|
DO 10 I = 1, J - 1
|
|
B( I, J ) = H( I, J )
|
|
10 CONTINUE
|
|
B( J, J ) = H( J, J ) - W
|
|
20 CONTINUE
|
|
*
|
|
IF( NOINIT ) THEN
|
|
*
|
|
* Initialize V.
|
|
*
|
|
DO 30 I = 1, N
|
|
V( I ) = EPS3
|
|
30 CONTINUE
|
|
ELSE
|
|
*
|
|
* Scale supplied initial vector.
|
|
*
|
|
VNORM = DZNRM2( N, V, 1 )
|
|
CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
|
|
END IF
|
|
*
|
|
IF( RIGHTV ) THEN
|
|
*
|
|
* LU decomposition with partial pivoting of B, replacing zero
|
|
* pivots by EPS3.
|
|
*
|
|
DO 60 I = 1, N - 1
|
|
EI = H( I+1, I )
|
|
IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
|
|
*
|
|
* Interchange rows and eliminate.
|
|
*
|
|
X = ZLADIV( B( I, I ), EI )
|
|
B( I, I ) = EI
|
|
DO 40 J = I + 1, N
|
|
TEMP = B( I+1, J )
|
|
B( I+1, J ) = B( I, J ) - X*TEMP
|
|
B( I, J ) = TEMP
|
|
40 CONTINUE
|
|
ELSE
|
|
*
|
|
* Eliminate without interchange.
|
|
*
|
|
IF( B( I, I ).EQ.ZERO )
|
|
$ B( I, I ) = EPS3
|
|
X = ZLADIV( EI, B( I, I ) )
|
|
IF( X.NE.ZERO ) THEN
|
|
DO 50 J = I + 1, N
|
|
B( I+1, J ) = B( I+1, J ) - X*B( I, J )
|
|
50 CONTINUE
|
|
END IF
|
|
END IF
|
|
60 CONTINUE
|
|
IF( B( N, N ).EQ.ZERO )
|
|
$ B( N, N ) = EPS3
|
|
*
|
|
TRANS = 'N'
|
|
*
|
|
ELSE
|
|
*
|
|
* UL decomposition with partial pivoting of B, replacing zero
|
|
* pivots by EPS3.
|
|
*
|
|
DO 90 J = N, 2, -1
|
|
EJ = H( J, J-1 )
|
|
IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
|
|
*
|
|
* Interchange columns and eliminate.
|
|
*
|
|
X = ZLADIV( B( J, J ), EJ )
|
|
B( J, J ) = EJ
|
|
DO 70 I = 1, J - 1
|
|
TEMP = B( I, J-1 )
|
|
B( I, J-1 ) = B( I, J ) - X*TEMP
|
|
B( I, J ) = TEMP
|
|
70 CONTINUE
|
|
ELSE
|
|
*
|
|
* Eliminate without interchange.
|
|
*
|
|
IF( B( J, J ).EQ.ZERO )
|
|
$ B( J, J ) = EPS3
|
|
X = ZLADIV( EJ, B( J, J ) )
|
|
IF( X.NE.ZERO ) THEN
|
|
DO 80 I = 1, J - 1
|
|
B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
|
|
80 CONTINUE
|
|
END IF
|
|
END IF
|
|
90 CONTINUE
|
|
IF( B( 1, 1 ).EQ.ZERO )
|
|
$ B( 1, 1 ) = EPS3
|
|
*
|
|
TRANS = 'C'
|
|
*
|
|
END IF
|
|
*
|
|
NORMIN = 'N'
|
|
DO 110 ITS = 1, N
|
|
*
|
|
* Solve U*x = scale*v for a right eigenvector
|
|
* or U**H *x = scale*v for a left eigenvector,
|
|
* overwriting x on v.
|
|
*
|
|
CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
|
|
$ SCALE, RWORK, IERR )
|
|
NORMIN = 'Y'
|
|
*
|
|
* Test for sufficient growth in the norm of v.
|
|
*
|
|
VNORM = DZASUM( N, V, 1 )
|
|
IF( VNORM.GE.GROWTO*SCALE )
|
|
$ GO TO 120
|
|
*
|
|
* Choose new orthogonal starting vector and try again.
|
|
*
|
|
RTEMP = EPS3 / ( ROOTN+ONE )
|
|
V( 1 ) = EPS3
|
|
DO 100 I = 2, N
|
|
V( I ) = RTEMP
|
|
100 CONTINUE
|
|
V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
|
|
110 CONTINUE
|
|
*
|
|
* Failure to find eigenvector in N iterations.
|
|
*
|
|
INFO = 1
|
|
*
|
|
120 CONTINUE
|
|
*
|
|
* Normalize eigenvector.
|
|
*
|
|
I = IZAMAX( N, V, 1 )
|
|
CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZLAEIN
|
|
*
|
|
END
|
|
|