You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1570 lines
57 KiB
1570 lines
57 KiB
*> \brief \b ZLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLANHF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER NORM, TRANSR, UPLO
|
|
* INTEGER N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION WORK( 0: * )
|
|
* COMPLEX*16 A( 0: * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLANHF returns the value of the one norm, or the Frobenius norm, or
|
|
*> the infinity norm, or the element of largest absolute value of a
|
|
*> complex Hermitian matrix A in RFP format.
|
|
*> \endverbatim
|
|
*>
|
|
*> \return ZLANHF
|
|
*> \verbatim
|
|
*>
|
|
*> ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
|
*> (
|
|
*> ( norm1(A), NORM = '1', 'O' or 'o'
|
|
*> (
|
|
*> ( normI(A), NORM = 'I' or 'i'
|
|
*> (
|
|
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
|
*>
|
|
*> where norm1 denotes the one norm of a matrix (maximum column sum),
|
|
*> normI denotes the infinity norm of a matrix (maximum row sum) and
|
|
*> normF denotes the Frobenius norm of a matrix (square root of sum of
|
|
*> squares). Note that max(abs(A(i,j))) is not a matrix norm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NORM
|
|
*> \verbatim
|
|
*> NORM is CHARACTER
|
|
*> Specifies the value to be returned in ZLANHF as described
|
|
*> above.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANSR
|
|
*> \verbatim
|
|
*> TRANSR is CHARACTER
|
|
*> Specifies whether the RFP format of A is normal or
|
|
*> conjugate-transposed format.
|
|
*> = 'N': RFP format is Normal
|
|
*> = 'C': RFP format is Conjugate-transposed
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER
|
|
*> On entry, UPLO specifies whether the RFP matrix A came from
|
|
*> an upper or lower triangular matrix as follows:
|
|
*>
|
|
*> UPLO = 'U' or 'u' RFP A came from an upper triangular
|
|
*> matrix
|
|
*>
|
|
*> UPLO = 'L' or 'l' RFP A came from a lower triangular
|
|
*> matrix
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0. When N = 0, ZLANHF is
|
|
*> set to zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
|
|
*> On entry, the matrix A in RFP Format.
|
|
*> RFP Format is described by TRANSR, UPLO and N as follows:
|
|
*> If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
|
|
*> K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
|
|
*> TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A
|
|
*> as defined when TRANSR = 'N'. The contents of RFP A are
|
|
*> defined by UPLO as follows: If UPLO = 'U' the RFP A
|
|
*> contains the ( N*(N+1)/2 ) elements of upper packed A
|
|
*> either in normal or conjugate-transpose Format. If
|
|
*> UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements
|
|
*> of lower packed A either in normal or conjugate-transpose
|
|
*> Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When
|
|
*> TRANSR is 'N' the LDA is N+1 when N is even and is N when
|
|
*> is odd. See the Note below for more details.
|
|
*> Unchanged on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (LWORK),
|
|
*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
|
|
*> WORK is not referenced.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> We first consider Standard Packed Format when N is even.
|
|
*> We give an example where N = 6.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 05 00
|
|
*> 11 12 13 14 15 10 11
|
|
*> 22 23 24 25 20 21 22
|
|
*> 33 34 35 30 31 32 33
|
|
*> 44 45 40 41 42 43 44
|
|
*> 55 50 51 52 53 54 55
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
|
|
*> conjugate-transpose of the first three columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
|
|
*> conjugate-transpose of the last three columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N even and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- --
|
|
*> 03 04 05 33 43 53
|
|
*> -- --
|
|
*> 13 14 15 00 44 54
|
|
*> --
|
|
*> 23 24 25 10 11 55
|
|
*>
|
|
*> 33 34 35 20 21 22
|
|
*> --
|
|
*> 00 44 45 30 31 32
|
|
*> -- --
|
|
*> 01 11 55 40 41 42
|
|
*> -- -- --
|
|
*> 02 12 22 50 51 52
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- -- --
|
|
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
|
|
*>
|
|
*>
|
|
*> We next consider Standard Packed Format when N is odd.
|
|
*> We give an example where N = 5.
|
|
*>
|
|
*> AP is Upper AP is Lower
|
|
*>
|
|
*> 00 01 02 03 04 00
|
|
*> 11 12 13 14 10 11
|
|
*> 22 23 24 20 21 22
|
|
*> 33 34 30 31 32 33
|
|
*> 44 40 41 42 43 44
|
|
*>
|
|
*>
|
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
|
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
|
|
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
|
|
*> conjugate-transpose of the first two columns of AP upper.
|
|
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
|
|
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
|
|
*> conjugate-transpose of the last two columns of AP lower.
|
|
*> To denote conjugate we place -- above the element. This covers the
|
|
*> case N odd and TRANSR = 'N'.
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- --
|
|
*> 02 03 04 00 33 43
|
|
*> --
|
|
*> 12 13 14 10 11 44
|
|
*>
|
|
*> 22 23 24 20 21 22
|
|
*> --
|
|
*> 00 33 34 30 31 32
|
|
*> -- --
|
|
*> 01 11 44 40 41 42
|
|
*>
|
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
|
*> transpose of RFP A above. One therefore gets:
|
|
*>
|
|
*>
|
|
*> RFP A RFP A
|
|
*>
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 02 12 22 00 01 00 10 20 30 40 50
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 03 13 23 33 11 33 11 21 31 41 51
|
|
*> -- -- -- -- -- -- -- -- --
|
|
*> 04 14 24 34 44 43 44 22 32 42 52
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER NORM, TRANSR, UPLO
|
|
INTEGER N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION WORK( 0: * )
|
|
COMPLEX*16 A( 0: * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, IFM, ILU, NOE, N1, K, L, LDA
|
|
DOUBLE PRECISION SCALE, S, VALUE, AA, TEMP
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME, DISNAN
|
|
EXTERNAL LSAME, DISNAN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLASSQ
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
ZLANHF = ZERO
|
|
RETURN
|
|
ELSE IF( N.EQ.1 ) THEN
|
|
ZLANHF = ABS(DBLE(A(0)))
|
|
RETURN
|
|
END IF
|
|
*
|
|
* set noe = 1 if n is odd. if n is even set noe=0
|
|
*
|
|
NOE = 1
|
|
IF( MOD( N, 2 ).EQ.0 )
|
|
$ NOE = 0
|
|
*
|
|
* set ifm = 0 when form='C' or 'c' and 1 otherwise
|
|
*
|
|
IFM = 1
|
|
IF( LSAME( TRANSR, 'C' ) )
|
|
$ IFM = 0
|
|
*
|
|
* set ilu = 0 when uplo='U or 'u' and 1 otherwise
|
|
*
|
|
ILU = 1
|
|
IF( LSAME( UPLO, 'U' ) )
|
|
$ ILU = 0
|
|
*
|
|
* set lda = (n+1)/2 when ifm = 0
|
|
* set lda = n when ifm = 1 and noe = 1
|
|
* set lda = n+1 when ifm = 1 and noe = 0
|
|
*
|
|
IF( IFM.EQ.1 ) THEN
|
|
IF( NOE.EQ.1 ) THEN
|
|
LDA = N
|
|
ELSE
|
|
* noe=0
|
|
LDA = N + 1
|
|
END IF
|
|
ELSE
|
|
* ifm=0
|
|
LDA = ( N+1 ) / 2
|
|
END IF
|
|
*
|
|
IF( LSAME( NORM, 'M' ) ) THEN
|
|
*
|
|
* Find max(abs(A(i,j))).
|
|
*
|
|
K = ( N+1 ) / 2
|
|
VALUE = ZERO
|
|
IF( NOE.EQ.1 ) THEN
|
|
* n is odd & n = k + k - 1
|
|
IF( IFM.EQ.1 ) THEN
|
|
* A is n by k
|
|
IF( ILU.EQ.1 ) THEN
|
|
* uplo ='L'
|
|
J = 0
|
|
* -> L(0,0)
|
|
TEMP = ABS( DBLE( A( J+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = 1, N - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
DO J = 1, K - 1
|
|
DO I = 0, J - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J - 1
|
|
* L(k+j,k+j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J
|
|
* -> L(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J + 1, N - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
* uplo = 'U'
|
|
DO J = 0, K - 2
|
|
DO I = 0, K + J - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = K + J - 1
|
|
* -> U(i,i)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = I + 1
|
|
* =k+j; i -> U(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = K + J + 1, N - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
DO I = 0, N - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
* j=k-1
|
|
END DO
|
|
* i=n-1 -> U(n-1,n-1)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END IF
|
|
ELSE
|
|
* xpose case; A is k by n
|
|
IF( ILU.EQ.1 ) THEN
|
|
* uplo ='L'
|
|
DO J = 0, K - 2
|
|
DO I = 0, J - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J
|
|
* L(i,i)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J + 1
|
|
* L(j+k,j+k)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J + 2, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
J = K - 1
|
|
DO I = 0, K - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = K - 1
|
|
* -> L(i,i) is at A(i,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO J = K, N - 1
|
|
DO I = 0, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
* uplo = 'U'
|
|
DO J = 0, K - 2
|
|
DO I = 0, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
J = K - 1
|
|
* -> U(j,j) is at A(0,j)
|
|
TEMP = ABS( DBLE( A( 0+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = 1, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
DO J = K, N - 1
|
|
DO I = 0, J - K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J - K
|
|
* -> U(i,i) at A(i,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J - K + 1
|
|
* U(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J - K + 2, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
* n is even & k = n/2
|
|
IF( IFM.EQ.1 ) THEN
|
|
* A is n+1 by k
|
|
IF( ILU.EQ.1 ) THEN
|
|
* uplo ='L'
|
|
J = 0
|
|
* -> L(k,k) & j=1 -> L(0,0)
|
|
TEMP = ABS( DBLE( A( J+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
TEMP = ABS( DBLE( A( J+1+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = 2, N
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
DO J = 1, K - 1
|
|
DO I = 0, J - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J
|
|
* L(k+j,k+j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J + 1
|
|
* -> L(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J + 2, N
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
* uplo = 'U'
|
|
DO J = 0, K - 2
|
|
DO I = 0, K + J - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = K + J
|
|
* -> U(i,i)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = I + 1
|
|
* =k+j+1; i -> U(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = K + J + 2, N
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
DO I = 0, N - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
* j=k-1
|
|
END DO
|
|
* i=n-1 -> U(n-1,n-1)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = N
|
|
* -> U(k-1,k-1)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END IF
|
|
ELSE
|
|
* xpose case; A is k by n+1
|
|
IF( ILU.EQ.1 ) THEN
|
|
* uplo ='L'
|
|
J = 0
|
|
* -> L(k,k) at A(0,0)
|
|
TEMP = ABS( DBLE( A( J+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = 1, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
DO J = 1, K - 1
|
|
DO I = 0, J - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J - 1
|
|
* L(i,i)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J
|
|
* L(j+k,j+k)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J + 1, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
J = K
|
|
DO I = 0, K - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = K - 1
|
|
* -> L(i,i) is at A(i,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO J = K + 1, N
|
|
DO I = 0, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
* uplo = 'U'
|
|
DO J = 0, K - 1
|
|
DO I = 0, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
J = K
|
|
* -> U(j,j) is at A(0,j)
|
|
TEMP = ABS( DBLE( A( 0+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = 1, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
DO J = K + 1, N - 1
|
|
DO I = 0, J - K - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = J - K - 1
|
|
* -> U(i,i) at A(i,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
I = J - K
|
|
* U(j,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
DO I = J - K + 1, K - 1
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END DO
|
|
J = N
|
|
DO I = 0, K - 2
|
|
TEMP = ABS( A( I+J*LDA ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
I = K - 1
|
|
* U(k,k) at A(i,j)
|
|
TEMP = ABS( DBLE( A( I+J*LDA ) ) )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END IF
|
|
END IF
|
|
END IF
|
|
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
|
|
$ ( NORM.EQ.'1' ) ) THEN
|
|
*
|
|
* Find normI(A) ( = norm1(A), since A is Hermitian).
|
|
*
|
|
IF( IFM.EQ.1 ) THEN
|
|
* A is 'N'
|
|
K = N / 2
|
|
IF( NOE.EQ.1 ) THEN
|
|
* n is odd & A is n by (n+1)/2
|
|
IF( ILU.EQ.0 ) THEN
|
|
* uplo = 'U'
|
|
DO I = 0, K - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = 0, K
|
|
S = ZERO
|
|
DO I = 0, K + J - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(i,j+k)
|
|
S = S + AA
|
|
WORK( I ) = WORK( I ) + AA
|
|
END DO
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j+k,j+k)
|
|
WORK( J+K ) = S + AA
|
|
IF( I.EQ.K+K )
|
|
$ GO TO 10
|
|
I = I + 1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j,j)
|
|
WORK( J ) = WORK( J ) + AA
|
|
S = ZERO
|
|
DO L = J + 1, K - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(l,j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
10 CONTINUE
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
ELSE
|
|
* ilu = 1 & uplo = 'L'
|
|
K = K + 1
|
|
* k=(n+1)/2 for n odd and ilu=1
|
|
DO I = K, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = K - 1, 0, -1
|
|
S = ZERO
|
|
DO I = 0, J - 2
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(j+k,i+k)
|
|
S = S + AA
|
|
WORK( I+K ) = WORK( I+K ) + AA
|
|
END DO
|
|
IF( J.GT.0 ) THEN
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j+k,j+k)
|
|
S = S + AA
|
|
WORK( I+K ) = WORK( I+K ) + S
|
|
* i=j
|
|
I = I + 1
|
|
END IF
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j,j)
|
|
WORK( J ) = AA
|
|
S = ZERO
|
|
DO L = J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(l,j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
* n is even & A is n+1 by k = n/2
|
|
IF( ILU.EQ.0 ) THEN
|
|
* uplo = 'U'
|
|
DO I = 0, K - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = 0, K - 1
|
|
S = ZERO
|
|
DO I = 0, K + J - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(i,j+k)
|
|
S = S + AA
|
|
WORK( I ) = WORK( I ) + AA
|
|
END DO
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j+k,j+k)
|
|
WORK( J+K ) = S + AA
|
|
I = I + 1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j,j)
|
|
WORK( J ) = WORK( J ) + AA
|
|
S = ZERO
|
|
DO L = J + 1, K - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(l,j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
ELSE
|
|
* ilu = 1 & uplo = 'L'
|
|
DO I = K, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = K - 1, 0, -1
|
|
S = ZERO
|
|
DO I = 0, J - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(j+k,i+k)
|
|
S = S + AA
|
|
WORK( I+K ) = WORK( I+K ) + AA
|
|
END DO
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j+k,j+k)
|
|
S = S + AA
|
|
WORK( I+K ) = WORK( I+K ) + S
|
|
* i=j
|
|
I = I + 1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* -> A(j,j)
|
|
WORK( J ) = AA
|
|
S = ZERO
|
|
DO L = J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* -> A(l,j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
* ifm=0
|
|
K = N / 2
|
|
IF( NOE.EQ.1 ) THEN
|
|
* n is odd & A is (n+1)/2 by n
|
|
IF( ILU.EQ.0 ) THEN
|
|
* uplo = 'U'
|
|
N1 = K
|
|
* n/2
|
|
K = K + 1
|
|
* k is the row size and lda
|
|
DO I = N1, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = 0, N1 - 1
|
|
S = ZERO
|
|
DO I = 0, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,n1+i)
|
|
WORK( I+N1 ) = WORK( I+N1 ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = S
|
|
END DO
|
|
* j=n1=k-1 is special
|
|
S = ABS( DBLE( A( 0+J*LDA ) ) )
|
|
* A(k-1,k-1)
|
|
DO I = 1, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(k-1,i+n1)
|
|
WORK( I+N1 ) = WORK( I+N1 ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
DO J = K, N - 1
|
|
S = ZERO
|
|
DO I = 0, J - K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(i,j-k)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
* i=j-k
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(j-k,j-k)
|
|
S = S + AA
|
|
WORK( J-K ) = WORK( J-K ) + S
|
|
I = I + 1
|
|
S = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(j,j)
|
|
DO L = J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,l)
|
|
WORK( L ) = WORK( L ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
ELSE
|
|
* ilu=1 & uplo = 'L'
|
|
K = K + 1
|
|
* k=(n+1)/2 for n odd and ilu=1
|
|
DO I = K, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = 0, K - 2
|
|
* process
|
|
S = ZERO
|
|
DO I = 0, J - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* i=j so process of A(j,j)
|
|
S = S + AA
|
|
WORK( J ) = S
|
|
* is initialised here
|
|
I = I + 1
|
|
* i=j process A(j+k,j+k)
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
S = AA
|
|
DO L = K + J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(l,k+j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( K+J ) = WORK( K+J ) + S
|
|
END DO
|
|
* j=k-1 is special :process col A(k-1,0:k-1)
|
|
S = ZERO
|
|
DO I = 0, K - 2
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(k,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
* i=k-1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(k-1,k-1)
|
|
S = S + AA
|
|
WORK( I ) = S
|
|
* done with col j=k+1
|
|
DO J = K, N - 1
|
|
* process col j of A = A(j,0:k-1)
|
|
S = ZERO
|
|
DO I = 0, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
* n is even & A is k=n/2 by n+1
|
|
IF( ILU.EQ.0 ) THEN
|
|
* uplo = 'U'
|
|
DO I = K, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
DO J = 0, K - 1
|
|
S = ZERO
|
|
DO I = 0, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,i+k)
|
|
WORK( I+K ) = WORK( I+K ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = S
|
|
END DO
|
|
* j=k
|
|
AA = ABS( DBLE( A( 0+J*LDA ) ) )
|
|
* A(k,k)
|
|
S = AA
|
|
DO I = 1, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(k,k+i)
|
|
WORK( I+K ) = WORK( I+K ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
DO J = K + 1, N - 1
|
|
S = ZERO
|
|
DO I = 0, J - 2 - K
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(i,j-k-1)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
* i=j-1-k
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(j-k-1,j-k-1)
|
|
S = S + AA
|
|
WORK( J-K-1 ) = WORK( J-K-1 ) + S
|
|
I = I + 1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(j,j)
|
|
S = AA
|
|
DO L = J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j,l)
|
|
WORK( L ) = WORK( L ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J ) = WORK( J ) + S
|
|
END DO
|
|
* j=n
|
|
S = ZERO
|
|
DO I = 0, K - 2
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(i,k-1)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
* i=k-1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(k-1,k-1)
|
|
S = S + AA
|
|
WORK( I ) = WORK( I ) + S
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
ELSE
|
|
* ilu=1 & uplo = 'L'
|
|
DO I = K, N - 1
|
|
WORK( I ) = ZERO
|
|
END DO
|
|
* j=0 is special :process col A(k:n-1,k)
|
|
S = ABS( DBLE( A( 0 ) ) )
|
|
* A(k,k)
|
|
DO I = 1, K - 1
|
|
AA = ABS( A( I ) )
|
|
* A(k+i,k)
|
|
WORK( I+K ) = WORK( I+K ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( K ) = WORK( K ) + S
|
|
DO J = 1, K - 1
|
|
* process
|
|
S = ZERO
|
|
DO I = 0, J - 2
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j-1,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* i=j-1 so process of A(j-1,j-1)
|
|
S = S + AA
|
|
WORK( J-1 ) = S
|
|
* is initialised here
|
|
I = I + 1
|
|
* i=j process A(j+k,j+k)
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
S = AA
|
|
DO L = K + J + 1, N - 1
|
|
I = I + 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(l,k+j)
|
|
S = S + AA
|
|
WORK( L ) = WORK( L ) + AA
|
|
END DO
|
|
WORK( K+J ) = WORK( K+J ) + S
|
|
END DO
|
|
* j=k is special :process col A(k,0:k-1)
|
|
S = ZERO
|
|
DO I = 0, K - 2
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(k,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
*
|
|
* i=k-1
|
|
AA = ABS( DBLE( A( I+J*LDA ) ) )
|
|
* A(k-1,k-1)
|
|
S = S + AA
|
|
WORK( I ) = S
|
|
* done with col j=k+1
|
|
DO J = K + 1, N
|
|
*
|
|
* process col j-1 of A = A(j-1,0:k-1)
|
|
S = ZERO
|
|
DO I = 0, K - 1
|
|
AA = ABS( A( I+J*LDA ) )
|
|
* A(j-1,i)
|
|
WORK( I ) = WORK( I ) + AA
|
|
S = S + AA
|
|
END DO
|
|
WORK( J-1 ) = WORK( J-1 ) + S
|
|
END DO
|
|
VALUE = WORK( 0 )
|
|
DO I = 1, N-1
|
|
TEMP = WORK( I )
|
|
IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
|
|
$ VALUE = TEMP
|
|
END DO
|
|
END IF
|
|
END IF
|
|
END IF
|
|
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
|
*
|
|
* Find normF(A).
|
|
*
|
|
K = ( N+1 ) / 2
|
|
SCALE = ZERO
|
|
S = ONE
|
|
IF( NOE.EQ.1 ) THEN
|
|
* n is odd
|
|
IF( IFM.EQ.1 ) THEN
|
|
* A is normal & A is n by k
|
|
IF( ILU.EQ.0 ) THEN
|
|
* A is upper
|
|
DO J = 0, K - 3
|
|
CALL ZLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
|
|
* L at A(k,0)
|
|
END DO
|
|
DO J = 0, K - 1
|
|
CALL ZLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
|
|
* trap U at A(0,0)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = K - 1
|
|
* -> U(k,k) at A(k-1,0)
|
|
DO I = 0, K - 2
|
|
AA = DBLE( A( L ) )
|
|
* U(k+i,k+i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* U(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
AA = DBLE( A( L ) )
|
|
* U(n-1,n-1)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
* ilu=1 & A is lower
|
|
DO J = 0, K - 1
|
|
CALL ZLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
|
|
* trap L at A(0,0)
|
|
END DO
|
|
DO J = 1, K - 2
|
|
CALL ZLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
|
|
* U at A(0,1)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
AA = DBLE( A( 0 ) )
|
|
* L(0,0) at A(0,0)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = LDA
|
|
* -> L(k,k) at A(0,1)
|
|
DO I = 1, K - 1
|
|
AA = DBLE( A( L ) )
|
|
* L(k-1+i,k-1+i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* L(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
* A is xpose & A is k by n
|
|
IF( ILU.EQ.0 ) THEN
|
|
* A**H is upper
|
|
DO J = 1, K - 2
|
|
CALL ZLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
|
|
* U at A(0,k)
|
|
END DO
|
|
DO J = 0, K - 2
|
|
CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
|
|
* k by k-1 rect. at A(0,0)
|
|
END DO
|
|
DO J = 0, K - 2
|
|
CALL ZLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
|
|
$ SCALE, S )
|
|
* L at A(0,k-1)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = 0 + K*LDA - LDA
|
|
* -> U(k-1,k-1) at A(0,k-1)
|
|
AA = DBLE( A( L ) )
|
|
* U(k-1,k-1)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA
|
|
* -> U(0,0) at A(0,k)
|
|
DO J = K, N - 1
|
|
AA = DBLE( A( L ) )
|
|
* -> U(j-k,j-k)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* -> U(j,j)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
ELSE
|
|
* A**H is lower
|
|
DO J = 1, K - 1
|
|
CALL ZLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
|
|
* U at A(0,0)
|
|
END DO
|
|
DO J = K, N - 1
|
|
CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
|
|
* k by k-1 rect. at A(0,k)
|
|
END DO
|
|
DO J = 0, K - 3
|
|
CALL ZLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
|
|
* L at A(1,0)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = 0
|
|
* -> L(0,0) at A(0,0)
|
|
DO I = 0, K - 2
|
|
AA = DBLE( A( L ) )
|
|
* L(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* L(k+i,k+i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
* L-> k-1 + (k-1)*lda or L(k-1,k-1) at A(k-1,k-1)
|
|
AA = DBLE( A( L ) )
|
|
* L(k-1,k-1) at A(k-1,k-1)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
* n is even
|
|
IF( IFM.EQ.1 ) THEN
|
|
* A is normal
|
|
IF( ILU.EQ.0 ) THEN
|
|
* A is upper
|
|
DO J = 0, K - 2
|
|
CALL ZLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
|
|
* L at A(k+1,0)
|
|
END DO
|
|
DO J = 0, K - 1
|
|
CALL ZLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
|
|
* trap U at A(0,0)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = K
|
|
* -> U(k,k) at A(k,0)
|
|
DO I = 0, K - 1
|
|
AA = DBLE( A( L ) )
|
|
* U(k+i,k+i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* U(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
ELSE
|
|
* ilu=1 & A is lower
|
|
DO J = 0, K - 1
|
|
CALL ZLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
|
|
* trap L at A(1,0)
|
|
END DO
|
|
DO J = 1, K - 1
|
|
CALL ZLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
|
|
* U at A(0,0)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = 0
|
|
* -> L(k,k) at A(0,0)
|
|
DO I = 0, K - 1
|
|
AA = DBLE( A( L ) )
|
|
* L(k-1+i,k-1+i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* L(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
END IF
|
|
ELSE
|
|
* A is xpose
|
|
IF( ILU.EQ.0 ) THEN
|
|
* A**H is upper
|
|
DO J = 1, K - 1
|
|
CALL ZLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
|
|
* U at A(0,k+1)
|
|
END DO
|
|
DO J = 0, K - 1
|
|
CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
|
|
* k by k rect. at A(0,0)
|
|
END DO
|
|
DO J = 0, K - 2
|
|
CALL ZLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
|
|
$ S )
|
|
* L at A(0,k)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = 0 + K*LDA
|
|
* -> U(k,k) at A(0,k)
|
|
AA = DBLE( A( L ) )
|
|
* U(k,k)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA
|
|
* -> U(0,0) at A(0,k+1)
|
|
DO J = K + 1, N - 1
|
|
AA = DBLE( A( L ) )
|
|
* -> U(j-k-1,j-k-1)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* -> U(j,j)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
* L=k-1+n*lda
|
|
* -> U(k-1,k-1) at A(k-1,n)
|
|
AA = DBLE( A( L ) )
|
|
* U(k,k)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
* A**H is lower
|
|
DO J = 1, K - 1
|
|
CALL ZLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
|
|
* U at A(0,1)
|
|
END DO
|
|
DO J = K + 1, N
|
|
CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
|
|
* k by k rect. at A(0,k+1)
|
|
END DO
|
|
DO J = 0, K - 2
|
|
CALL ZLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
|
|
* L at A(0,0)
|
|
END DO
|
|
S = S + S
|
|
* double s for the off diagonal elements
|
|
L = 0
|
|
* -> L(k,k) at A(0,0)
|
|
AA = DBLE( A( L ) )
|
|
* L(k,k) at A(0,0)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = LDA
|
|
* -> L(0,0) at A(0,1)
|
|
DO I = 0, K - 2
|
|
AA = DBLE( A( L ) )
|
|
* L(i,i)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
AA = DBLE( A( L+1 ) )
|
|
* L(k+i+1,k+i+1)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
L = L + LDA + 1
|
|
END DO
|
|
* L-> k - 1 + k*lda or L(k-1,k-1) at A(k-1,k)
|
|
AA = DBLE( A( L ) )
|
|
* L(k-1,k-1) at A(k-1,k)
|
|
IF( AA.NE.ZERO ) THEN
|
|
IF( SCALE.LT.AA ) THEN
|
|
S = ONE + S*( SCALE / AA )**2
|
|
SCALE = AA
|
|
ELSE
|
|
S = S + ( AA / SCALE )**2
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
VALUE = SCALE*SQRT( S )
|
|
END IF
|
|
*
|
|
ZLANHF = VALUE
|
|
RETURN
|
|
*
|
|
* End of ZLANHF
|
|
*
|
|
END
|
|
|