Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

290 lines
7.9 KiB

!> \brief \b ZLARTG generates a plane rotation with real cosine and complex sine.
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
! Definition:
! ===========
!
! SUBROUTINE ZLARTG( F, G, C, S, R )
!
! .. Scalar Arguments ..
! REAL(wp) C
! COMPLEX(wp) F, G, R, S
! ..
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> ZLARTG generates a plane rotation so that
!>
!> [ C S ] . [ F ] = [ R ]
!> [ -conjg(S) C ] [ G ] [ 0 ]
!>
!> where C is real and C**2 + |S|**2 = 1.
!>
!> The mathematical formulas used for C and S are
!>
!> sgn(x) = { x / |x|, x != 0
!> { 1, x = 0
!>
!> R = sgn(F) * sqrt(|F|**2 + |G|**2)
!>
!> C = |F| / sqrt(|F|**2 + |G|**2)
!>
!> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
!>
!> Special conditions:
!> If G=0, then C=1 and S=0.
!> If F=0, then C=0 and S is chosen so that R is real.
!>
!> When F and G are real, the formulas simplify to C = F/R and
!> S = G/R, and the returned values of C, S, and R should be
!> identical to those returned by DLARTG.
!>
!> The algorithm used to compute these quantities incorporates scaling
!> to avoid overflow or underflow in computing the square root of the
!> sum of squares.
!>
!> This is the same routine ZROTG fom BLAS1, except that
!> F and G are unchanged on return.
!>
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
!> \endverbatim
!
! Arguments:
! ==========
!
!> \param[in] F
!> \verbatim
!> F is COMPLEX(wp)
!> The first component of vector to be rotated.
!> \endverbatim
!>
!> \param[in] G
!> \verbatim
!> G is COMPLEX(wp)
!> The second component of vector to be rotated.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL(wp)
!> The cosine of the rotation.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is COMPLEX(wp)
!> The sine of the rotation.
!> \endverbatim
!>
!> \param[out] R
!> \verbatim
!> R is COMPLEX(wp)
!> The nonzero component of the rotated vector.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Weslley Pereira, University of Colorado Denver, USA
!
!> \date December 2021
!
!> \ingroup OTHERauxiliary
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Based on the algorithm from
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
subroutine ZLARTG( f, g, c, s, r )
use LA_CONSTANTS, &
only: wp=>dp, zero=>dzero, one=>done, two=>dtwo, czero=>zzero, &
safmin=>dsafmin, safmax=>dsafmax
!
! -- LAPACK auxiliary routine --
! -- LAPACK is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! February 2021
!
! .. Scalar Arguments ..
real(wp) c
complex(wp) f, g, r, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
complex(wp) :: fs, gs, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: ABSSQ
! ..
! .. Statement Function definitions ..
ABSSQ( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Constants ..
rtmin = sqrt( safmin )
! ..
! .. Executable Statements ..
!
if( g == czero ) then
c = one
s = czero
r = f
else if( f == czero ) then
c = zero
if( real(g) == zero ) then
r = abs(aimag(g))
s = conjg( g ) / r
elseif( aimag(g) == zero ) then
r = abs(real(g))
s = conjg( g ) / r
else
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/2 )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
! The following two lines can be replaced by `d = abs( g )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
gs = g / u
! The following two lines can be replaced by `d = abs( gs )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
end if
end if
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/4 )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = ABSSQ( f )
g2 = ABSSQ( g )
h2 = f2 + g2
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = f / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( g ) * ( f / sqrt( f2*h2 ) )
else
s = conjg( g ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = f / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = f * ( h2 / d )
end if
s = conjg( g ) * ( f / d )
end if
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
gs = g / u
g2 = ABSSQ( gs )
if( f1 / u < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
w = v / u
fs = f / v
f2 = ABSSQ( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f / u
f2 = ABSSQ( fs )
h2 = f2 + g2
end if
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = fs / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
else
s = conjg( gs ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = fs / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = fs * ( h2 / d )
end if
s = conjg( gs ) * ( fs / d )
end if
! Rescale c and r
c = c * w
r = r * u
end if
end if
return
end subroutine