You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
9.2 KiB
334 lines
9.2 KiB
*> \brief \b ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLARZB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarzb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarzb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarzb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
|
|
* LDV, T, LDT, C, LDC, WORK, LDWORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIRECT, SIDE, STOREV, TRANS
|
|
* INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
|
|
* $ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLARZB applies a complex block reflector H or its transpose H**H
|
|
*> to a complex distributed M-by-N C from the left or the right.
|
|
*>
|
|
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply H or H**H from the Left
|
|
*> = 'R': apply H or H**H from the Right
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': apply H (No transpose)
|
|
*> = 'C': apply H**H (Conjugate transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIRECT
|
|
*> \verbatim
|
|
*> DIRECT is CHARACTER*1
|
|
*> Indicates how H is formed from a product of elementary
|
|
*> reflectors
|
|
*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
|
|
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] STOREV
|
|
*> \verbatim
|
|
*> STOREV is CHARACTER*1
|
|
*> Indicates how the vectors which define the elementary
|
|
*> reflectors are stored:
|
|
*> = 'C': Columnwise (not supported yet)
|
|
*> = 'R': Rowwise
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The order of the matrix T (= the number of elementary
|
|
*> reflectors whose product defines the block reflector).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] L
|
|
*> \verbatim
|
|
*> L is INTEGER
|
|
*> The number of columns of the matrix V containing the
|
|
*> meaningful part of the Householder reflectors.
|
|
*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (LDV,NV).
|
|
*> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V.
|
|
*> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] T
|
|
*> \verbatim
|
|
*> T is COMPLEX*16 array, dimension (LDT,K)
|
|
*> The triangular K-by-K matrix T in the representation of the
|
|
*> block reflector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDT
|
|
*> \verbatim
|
|
*> LDT is INTEGER
|
|
*> The leading dimension of the array T. LDT >= K.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX*16 array, dimension (LDC,N)
|
|
*> On entry, the M-by-N matrix C.
|
|
*> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (LDWORK,K)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWORK
|
|
*> \verbatim
|
|
*> LDWORK is INTEGER
|
|
*> The leading dimension of the array WORK.
|
|
*> If SIDE = 'L', LDWORK >= max(1,N);
|
|
*> if SIDE = 'R', LDWORK >= max(1,M).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
|
|
$ LDV, T, LDT, C, LDC, WORK, LDWORK )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIRECT, SIDE, STOREV, TRANS
|
|
INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
|
|
$ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE
|
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER TRANST
|
|
INTEGER I, INFO, J
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZCOPY, ZGEMM, ZLACGV, ZTRMM
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.LE.0 .OR. N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
* Check for currently supported options
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZLARZB', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
|
TRANST = 'C'
|
|
ELSE
|
|
TRANST = 'N'
|
|
END IF
|
|
*
|
|
IF( LSAME( SIDE, 'L' ) ) THEN
|
|
*
|
|
* Form H * C or H**H * C
|
|
*
|
|
* W( 1:n, 1:k ) = C( 1:k, 1:n )**H
|
|
*
|
|
DO 10 J = 1, K
|
|
CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
|
|
10 CONTINUE
|
|
*
|
|
* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
|
|
* C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
|
|
*
|
|
IF( L.GT.0 )
|
|
$ CALL ZGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
|
|
$ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
|
|
$ LDWORK )
|
|
*
|
|
* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
|
|
*
|
|
CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
|
|
$ LDT, WORK, LDWORK )
|
|
*
|
|
* C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
|
|
*
|
|
DO 30 J = 1, N
|
|
DO 20 I = 1, K
|
|
C( I, J ) = C( I, J ) - WORK( J, I )
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
|
|
* V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
|
|
*
|
|
IF( L.GT.0 )
|
|
$ CALL ZGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
|
|
$ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
|
|
*
|
|
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
|
|
*
|
|
* Form C * H or C * H**H
|
|
*
|
|
* W( 1:m, 1:k ) = C( 1:m, 1:k )
|
|
*
|
|
DO 40 J = 1, K
|
|
CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
|
|
40 CONTINUE
|
|
*
|
|
* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
|
|
* C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
|
|
*
|
|
IF( L.GT.0 )
|
|
$ CALL ZGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
|
|
$ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
|
|
*
|
|
* W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
|
|
* W( 1:m, 1:k ) * T**H
|
|
*
|
|
DO 50 J = 1, K
|
|
CALL ZLACGV( K-J+1, T( J, J ), 1 )
|
|
50 CONTINUE
|
|
CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
|
|
$ LDT, WORK, LDWORK )
|
|
DO 60 J = 1, K
|
|
CALL ZLACGV( K-J+1, T( J, J ), 1 )
|
|
60 CONTINUE
|
|
*
|
|
* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
|
|
*
|
|
DO 80 J = 1, K
|
|
DO 70 I = 1, M
|
|
C( I, J ) = C( I, J ) - WORK( I, J )
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
|
|
* W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
|
|
*
|
|
DO 90 J = 1, L
|
|
CALL ZLACGV( K, V( 1, J ), 1 )
|
|
90 CONTINUE
|
|
IF( L.GT.0 )
|
|
$ CALL ZGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
|
|
$ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
|
|
DO 100 J = 1, L
|
|
CALL ZLACGV( K, V( 1, J ), 1 )
|
|
100 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZLARZB
|
|
*
|
|
END
|
|
|