You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
9.0 KiB
311 lines
9.0 KiB
*> \brief \b ZLAUNHR_COL_GETRFNP2
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZLAUNHR_COL_GETRFNP2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* RECURSIVE SUBROUTINE ZLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), D( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
|
|
*> pivoting of a complex general M-by-N matrix A. The factorization has
|
|
*> the form:
|
|
*>
|
|
*> A - S = L * U,
|
|
*>
|
|
*> where:
|
|
*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
|
|
*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
|
|
*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
|
|
*> i-1 steps of Gaussian elimination. This means that the diagonal
|
|
*> element at each step of "modified" Gaussian elimination is at
|
|
*> least one in absolute value (so that division-by-zero not
|
|
*> possible during the division by the diagonal element);
|
|
*>
|
|
*> L is a M-by-N lower triangular matrix with unit diagonal elements
|
|
*> (lower trapezoidal if M > N);
|
|
*>
|
|
*> and U is a M-by-N upper triangular matrix
|
|
*> (upper trapezoidal if M < N).
|
|
*>
|
|
*> This routine is an auxiliary routine used in the Householder
|
|
*> reconstruction routine ZUNHR_COL. In ZUNHR_COL, this routine is
|
|
*> applied to an M-by-N matrix A with orthonormal columns, where each
|
|
*> element is bounded by one in absolute value. With the choice of
|
|
*> the matrix S above, one can show that the diagonal element at each
|
|
*> step of Gaussian elimination is the largest (in absolute value) in
|
|
*> the column on or below the diagonal, so that no pivoting is required
|
|
*> for numerical stability [1].
|
|
*>
|
|
*> For more details on the Householder reconstruction algorithm,
|
|
*> including the modified LU factorization, see [1].
|
|
*>
|
|
*> This is the recursive version of the LU factorization algorithm.
|
|
*> Denote A - S by B. The algorithm divides the matrix B into four
|
|
*> submatrices:
|
|
*>
|
|
*> [ B11 | B12 ] where B11 is n1 by n1,
|
|
*> B = [ -----|----- ] B21 is (m-n1) by n1,
|
|
*> [ B21 | B22 ] B12 is n1 by n2,
|
|
*> B22 is (m-n1) by n2,
|
|
*> with n1 = min(m,n)/2, n2 = n-n1.
|
|
*>
|
|
*>
|
|
*> The subroutine calls itself to factor B11, solves for B21,
|
|
*> solves for B12, updates B22, then calls itself to factor B22.
|
|
*>
|
|
*> For more details on the recursive LU algorithm, see [2].
|
|
*>
|
|
*> ZLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
|
|
*> routine ZLAUNHR_COL_GETRFNP, which uses blocked code calling
|
|
*> Level 3 BLAS to update the submatrix. However, ZLAUNHR_COL_GETRFNP2
|
|
*> is self-sufficient and can be used without ZLAUNHR_COL_GETRFNP.
|
|
*>
|
|
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
|
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
|
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
|
*> vol. 85, pp. 3-31, 2015.
|
|
*>
|
|
*> [2] "Recursion leads to automatic variable blocking for dense linear
|
|
*> algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
|
|
*> vol. 41, no. 6, pp. 737-755, 1997.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix to be factored.
|
|
*> On exit, the factors L and U from the factorization
|
|
*> A-S=L*U; the unit diagonal elements of L are not stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is COMPLEX*16 array, dimension min(M,N)
|
|
*> The diagonal elements of the diagonal M-by-N sign matrix S,
|
|
*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
|
|
*> only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*>
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16GEcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> November 2019, Igor Kozachenko,
|
|
*> Computer Science Division,
|
|
*> University of California, Berkeley
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* =====================================================================
|
|
RECURSIVE SUBROUTINE ZLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
|
IMPLICIT NONE
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), D( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
COMPLEX*16 CONE
|
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION SFMIN
|
|
INTEGER I, IINFO, N1, N2
|
|
COMPLEX*16 Z
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL DLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZGEMM, ZSCAL, ZTRSM, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, DSIGN, MAX, MIN
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZLAUNHR_COL_GETRFNP2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( MIN( M, N ).EQ.0 )
|
|
$ RETURN
|
|
|
|
IF ( M.EQ.1 ) THEN
|
|
*
|
|
* One row case, (also recursion termination case),
|
|
* use unblocked code
|
|
*
|
|
* Transfer the sign
|
|
*
|
|
D( 1 ) = DCMPLX( -DSIGN( ONE, DBLE( A( 1, 1 ) ) ) )
|
|
*
|
|
* Construct the row of U
|
|
*
|
|
A( 1, 1 ) = A( 1, 1 ) - D( 1 )
|
|
*
|
|
ELSE IF( N.EQ.1 ) THEN
|
|
*
|
|
* One column case, (also recursion termination case),
|
|
* use unblocked code
|
|
*
|
|
* Transfer the sign
|
|
*
|
|
D( 1 ) = DCMPLX( -DSIGN( ONE, DBLE( A( 1, 1 ) ) ) )
|
|
*
|
|
* Construct the row of U
|
|
*
|
|
A( 1, 1 ) = A( 1, 1 ) - D( 1 )
|
|
*
|
|
* Scale the elements 2:M of the column
|
|
*
|
|
* Determine machine safe minimum
|
|
*
|
|
SFMIN = DLAMCH('S')
|
|
*
|
|
* Construct the subdiagonal elements of L
|
|
*
|
|
IF( CABS1( A( 1, 1 ) ) .GE. SFMIN ) THEN
|
|
CALL ZSCAL( M-1, CONE / A( 1, 1 ), A( 2, 1 ), 1 )
|
|
ELSE
|
|
DO I = 2, M
|
|
A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
|
|
END DO
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* Divide the matrix B into four submatrices
|
|
*
|
|
N1 = MIN( M, N ) / 2
|
|
N2 = N-N1
|
|
|
|
*
|
|
* Factor B11, recursive call
|
|
*
|
|
CALL ZLAUNHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
|
|
*
|
|
* Solve for B21
|
|
*
|
|
CALL ZTRSM( 'R', 'U', 'N', 'N', M-N1, N1, CONE, A, LDA,
|
|
$ A( N1+1, 1 ), LDA )
|
|
*
|
|
* Solve for B12
|
|
*
|
|
CALL ZTRSM( 'L', 'L', 'N', 'U', N1, N2, CONE, A, LDA,
|
|
$ A( 1, N1+1 ), LDA )
|
|
*
|
|
* Update B22, i.e. compute the Schur complement
|
|
* B22 := B22 - B21*B12
|
|
*
|
|
CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -CONE, A( N1+1, 1 ), LDA,
|
|
$ A( 1, N1+1 ), LDA, CONE, A( N1+1, N1+1 ), LDA )
|
|
*
|
|
* Factor B22, recursive call
|
|
*
|
|
CALL ZLAUNHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
|
|
$ D( N1+1 ), IINFO )
|
|
*
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of ZLAUNHR_COL_GETRFNP2
|
|
*
|
|
END
|
|
|