You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
439 lines
14 KiB
439 lines
14 KiB
*> \brief \b ZPBTRF
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZPBTRF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtrf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtrf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtrf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZPBTRF computes the Cholesky factorization of a complex Hermitian
|
|
*> positive definite band matrix A.
|
|
*>
|
|
*> The factorization has the form
|
|
*> A = U**H * U, if UPLO = 'U', or
|
|
*> A = L * L**H, if UPLO = 'L',
|
|
*> where U is an upper triangular matrix and L is lower triangular.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
|
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
|
*> On entry, the upper or lower triangle of the Hermitian band
|
|
*> matrix A, stored in the first KD+1 rows of the array. The
|
|
*> j-th column of A is stored in the j-th column of the array AB
|
|
*> as follows:
|
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*>
|
|
*> On exit, if INFO = 0, the triangular factor U or L from the
|
|
*> Cholesky factorization A = U**H*U or A = L*L**H of the band
|
|
*> matrix A, in the same storage format as A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the leading principal minor of order i
|
|
*> is not positive, and the factorization could not be
|
|
*> completed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The band storage scheme is illustrated by the following example, when
|
|
*> N = 6, KD = 2, and UPLO = 'U':
|
|
*>
|
|
*> On entry: On exit:
|
|
*>
|
|
*> * * a13 a24 a35 a46 * * u13 u24 u35 u46
|
|
*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
|
|
*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
|
|
*>
|
|
*> Similarly, if UPLO = 'L' the format of A is as follows:
|
|
*>
|
|
*> On entry: On exit:
|
|
*>
|
|
*> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
|
|
*> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
|
|
*> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
|
|
*>
|
|
*> Array elements marked * are not used by the routine.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
COMPLEX*16 CONE
|
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
INTEGER NBMAX, LDWORK
|
|
PARAMETER ( NBMAX = 32, LDWORK = NBMAX+1 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, I2, I3, IB, II, J, JJ, NB
|
|
* ..
|
|
* .. Local Arrays ..
|
|
COMPLEX*16 WORK( LDWORK, NBMAX )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL LSAME, ILAENV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZGEMM, ZHERK, ZPBTF2, ZPOTF2, ZTRSM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
|
|
$ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KD.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDAB.LT.KD+1 ) THEN
|
|
INFO = -5
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZPBTRF', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Determine the block size for this environment
|
|
*
|
|
NB = ILAENV( 1, 'ZPBTRF', UPLO, N, KD, -1, -1 )
|
|
*
|
|
* The block size must not exceed the semi-bandwidth KD, and must not
|
|
* exceed the limit set by the size of the local array WORK.
|
|
*
|
|
NB = MIN( NB, NBMAX )
|
|
*
|
|
IF( NB.LE.1 .OR. NB.GT.KD ) THEN
|
|
*
|
|
* Use unblocked code
|
|
*
|
|
CALL ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
|
|
ELSE
|
|
*
|
|
* Use blocked code
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* Compute the Cholesky factorization of a Hermitian band
|
|
* matrix, given the upper triangle of the matrix in band
|
|
* storage.
|
|
*
|
|
* Zero the upper triangle of the work array.
|
|
*
|
|
DO 20 J = 1, NB
|
|
DO 10 I = 1, J - 1
|
|
WORK( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
* Process the band matrix one diagonal block at a time.
|
|
*
|
|
DO 70 I = 1, N, NB
|
|
IB = MIN( NB, N-I+1 )
|
|
*
|
|
* Factorize the diagonal block
|
|
*
|
|
CALL ZPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
|
|
IF( II.NE.0 ) THEN
|
|
INFO = I + II - 1
|
|
GO TO 150
|
|
END IF
|
|
IF( I+IB.LE.N ) THEN
|
|
*
|
|
* Update the relevant part of the trailing submatrix.
|
|
* If A11 denotes the diagonal block which has just been
|
|
* factorized, then we need to update the remaining
|
|
* blocks in the diagram:
|
|
*
|
|
* A11 A12 A13
|
|
* A22 A23
|
|
* A33
|
|
*
|
|
* The numbers of rows and columns in the partitioning
|
|
* are IB, I2, I3 respectively. The blocks A12, A22 and
|
|
* A23 are empty if IB = KD. The upper triangle of A13
|
|
* lies outside the band.
|
|
*
|
|
I2 = MIN( KD-IB, N-I-IB+1 )
|
|
I3 = MIN( IB, N-I-KD+1 )
|
|
*
|
|
IF( I2.GT.0 ) THEN
|
|
*
|
|
* Update A12
|
|
*
|
|
CALL ZTRSM( 'Left', 'Upper', 'Conjugate transpose',
|
|
$ 'Non-unit', IB, I2, CONE,
|
|
$ AB( KD+1, I ), LDAB-1,
|
|
$ AB( KD+1-IB, I+IB ), LDAB-1 )
|
|
*
|
|
* Update A22
|
|
*
|
|
CALL ZHERK( 'Upper', 'Conjugate transpose', I2, IB,
|
|
$ -ONE, AB( KD+1-IB, I+IB ), LDAB-1, ONE,
|
|
$ AB( KD+1, I+IB ), LDAB-1 )
|
|
END IF
|
|
*
|
|
IF( I3.GT.0 ) THEN
|
|
*
|
|
* Copy the lower triangle of A13 into the work array.
|
|
*
|
|
DO 40 JJ = 1, I3
|
|
DO 30 II = JJ, IB
|
|
WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
*
|
|
* Update A13 (in the work array).
|
|
*
|
|
CALL ZTRSM( 'Left', 'Upper', 'Conjugate transpose',
|
|
$ 'Non-unit', IB, I3, CONE,
|
|
$ AB( KD+1, I ), LDAB-1, WORK, LDWORK )
|
|
*
|
|
* Update A23
|
|
*
|
|
IF( I2.GT.0 )
|
|
$ CALL ZGEMM( 'Conjugate transpose',
|
|
$ 'No transpose', I2, I3, IB, -CONE,
|
|
$ AB( KD+1-IB, I+IB ), LDAB-1, WORK,
|
|
$ LDWORK, CONE, AB( 1+IB, I+KD ),
|
|
$ LDAB-1 )
|
|
*
|
|
* Update A33
|
|
*
|
|
CALL ZHERK( 'Upper', 'Conjugate transpose', I3, IB,
|
|
$ -ONE, WORK, LDWORK, ONE,
|
|
$ AB( KD+1, I+KD ), LDAB-1 )
|
|
*
|
|
* Copy the lower triangle of A13 back into place.
|
|
*
|
|
DO 60 JJ = 1, I3
|
|
DO 50 II = JJ, IB
|
|
AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
END IF
|
|
END IF
|
|
70 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute the Cholesky factorization of a Hermitian band
|
|
* matrix, given the lower triangle of the matrix in band
|
|
* storage.
|
|
*
|
|
* Zero the lower triangle of the work array.
|
|
*
|
|
DO 90 J = 1, NB
|
|
DO 80 I = J + 1, NB
|
|
WORK( I, J ) = ZERO
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
*
|
|
* Process the band matrix one diagonal block at a time.
|
|
*
|
|
DO 140 I = 1, N, NB
|
|
IB = MIN( NB, N-I+1 )
|
|
*
|
|
* Factorize the diagonal block
|
|
*
|
|
CALL ZPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
|
|
IF( II.NE.0 ) THEN
|
|
INFO = I + II - 1
|
|
GO TO 150
|
|
END IF
|
|
IF( I+IB.LE.N ) THEN
|
|
*
|
|
* Update the relevant part of the trailing submatrix.
|
|
* If A11 denotes the diagonal block which has just been
|
|
* factorized, then we need to update the remaining
|
|
* blocks in the diagram:
|
|
*
|
|
* A11
|
|
* A21 A22
|
|
* A31 A32 A33
|
|
*
|
|
* The numbers of rows and columns in the partitioning
|
|
* are IB, I2, I3 respectively. The blocks A21, A22 and
|
|
* A32 are empty if IB = KD. The lower triangle of A31
|
|
* lies outside the band.
|
|
*
|
|
I2 = MIN( KD-IB, N-I-IB+1 )
|
|
I3 = MIN( IB, N-I-KD+1 )
|
|
*
|
|
IF( I2.GT.0 ) THEN
|
|
*
|
|
* Update A21
|
|
*
|
|
CALL ZTRSM( 'Right', 'Lower',
|
|
$ 'Conjugate transpose', 'Non-unit', I2,
|
|
$ IB, CONE, AB( 1, I ), LDAB-1,
|
|
$ AB( 1+IB, I ), LDAB-1 )
|
|
*
|
|
* Update A22
|
|
*
|
|
CALL ZHERK( 'Lower', 'No transpose', I2, IB, -ONE,
|
|
$ AB( 1+IB, I ), LDAB-1, ONE,
|
|
$ AB( 1, I+IB ), LDAB-1 )
|
|
END IF
|
|
*
|
|
IF( I3.GT.0 ) THEN
|
|
*
|
|
* Copy the upper triangle of A31 into the work array.
|
|
*
|
|
DO 110 JJ = 1, IB
|
|
DO 100 II = 1, MIN( JJ, I3 )
|
|
WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
*
|
|
* Update A31 (in the work array).
|
|
*
|
|
CALL ZTRSM( 'Right', 'Lower',
|
|
$ 'Conjugate transpose', 'Non-unit', I3,
|
|
$ IB, CONE, AB( 1, I ), LDAB-1, WORK,
|
|
$ LDWORK )
|
|
*
|
|
* Update A32
|
|
*
|
|
IF( I2.GT.0 )
|
|
$ CALL ZGEMM( 'No transpose',
|
|
$ 'Conjugate transpose', I3, I2, IB,
|
|
$ -CONE, WORK, LDWORK, AB( 1+IB, I ),
|
|
$ LDAB-1, CONE, AB( 1+KD-IB, I+IB ),
|
|
$ LDAB-1 )
|
|
*
|
|
* Update A33
|
|
*
|
|
CALL ZHERK( 'Lower', 'No transpose', I3, IB, -ONE,
|
|
$ WORK, LDWORK, ONE, AB( 1, I+KD ),
|
|
$ LDAB-1 )
|
|
*
|
|
* Copy the upper triangle of A31 back into place.
|
|
*
|
|
DO 130 JJ = 1, IB
|
|
DO 120 II = 1, MIN( JJ, I3 )
|
|
AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
END IF
|
|
END IF
|
|
140 CONTINUE
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
150 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of ZPBTRF
|
|
*
|
|
END
|
|
|