You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
465 lines
14 KiB
465 lines
14 KiB
*> \brief \b ZSYTRF_AA
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZSYTRF_AA + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER N, LDA, LWORK, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX*16 A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
|
|
*> using the Aasen's algorithm. The form of the factorization is
|
|
*>
|
|
*> A = U**T*T*U or A = L*T*L**T
|
|
*>
|
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
|
*> triangular matrices, and T is a complex symmetric tridiagonal matrix.
|
|
*>
|
|
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
*> N-by-N upper triangular part of A contains the upper
|
|
*> triangular part of the matrix A, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading N-by-N lower triangular part of A contains the lower
|
|
*> triangular part of the matrix A, and the strictly upper
|
|
*> triangular part of A is not referenced.
|
|
*>
|
|
*> On exit, the tridiagonal matrix is stored in the diagonals
|
|
*> and the subdiagonals of A just below (or above) the diagonals,
|
|
*> and L is stored below (or above) the subdiagonals, when UPLO
|
|
*> is 'L' (or 'U').
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> On exit, it contains the details of the interchanges, i.e.,
|
|
*> the row and column k of A were interchanged with the
|
|
*> row and column IPIV(k).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
|
|
*> LWORK >= N*(1+NB), where NB is the optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16SYcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
IMPLICIT NONE
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER N, LDA, LWORK, INFO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX*16 A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
* .. Parameters ..
|
|
COMPLEX*16 ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, UPPER
|
|
INTEGER J, LWKOPT
|
|
INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
|
|
COMPLEX*16 ALPHA
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL LSAME, ILAENV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLASYF_AA, ZGEMM, ZGEMV, ZSCAL, ZCOPY,
|
|
$ ZSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Determine the block size
|
|
*
|
|
NB = ILAENV( 1, 'ZSYTRF_AA', UPLO, N, -1, -1, -1 )
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -7
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
LWKOPT = (NB+1)*N
|
|
WORK( 1 ) = LWKOPT
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZSYTRF_AA', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return
|
|
*
|
|
IF ( N.EQ.0 ) THEN
|
|
RETURN
|
|
ENDIF
|
|
IPIV( 1 ) = 1
|
|
IF ( N.EQ.1 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Adjust block size based on the workspace size
|
|
*
|
|
IF( LWORK.LT.((1+NB)*N) ) THEN
|
|
NB = ( LWORK-N ) / N
|
|
END IF
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* .....................................................
|
|
* Factorize A as U**T*D*U using the upper triangle of A
|
|
* .....................................................
|
|
*
|
|
* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
|
|
*
|
|
CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
|
|
*
|
|
* J is the main loop index, increasing from 1 to N in steps of
|
|
* JB, where JB is the number of columns factorized by ZLASYF;
|
|
* JB is either NB, or N-J+1 for the last block
|
|
*
|
|
J = 0
|
|
10 CONTINUE
|
|
IF( J.GE.N )
|
|
$ GO TO 20
|
|
*
|
|
* each step of the main loop
|
|
* J is the last column of the previous panel
|
|
* J1 is the first column of the current panel
|
|
* K1 identifies if the previous column of the panel has been
|
|
* explicitly stored, e.g., K1=1 for the first panel, and
|
|
* K1=0 for the rest
|
|
*
|
|
J1 = J + 1
|
|
JB = MIN( N-J1+1, NB )
|
|
K1 = MAX(1, J)-J
|
|
*
|
|
* Panel factorization
|
|
*
|
|
CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
|
|
$ A( MAX(1, J), J+1 ), LDA,
|
|
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
|
*
|
|
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
|
*
|
|
DO J2 = J+2, MIN(N, J+JB+1)
|
|
IPIV( J2 ) = IPIV( J2 ) + J
|
|
IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
|
|
CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
|
|
$ A( 1, IPIV(J2) ), 1 )
|
|
END IF
|
|
END DO
|
|
J = J + JB
|
|
*
|
|
* Trailing submatrix update, where
|
|
* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
|
|
* WORK stores the current block of the auxiriarly matrix H
|
|
*
|
|
IF( J.LT.N ) THEN
|
|
*
|
|
* If first panel and JB=1 (NB=1), then nothing to do
|
|
*
|
|
IF( J1.GT.1 .OR. JB.GT.1 ) THEN
|
|
*
|
|
* Merge rank-1 update with BLAS-3 update
|
|
*
|
|
ALPHA = A( J, J+1 )
|
|
A( J, J+1 ) = ONE
|
|
CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
|
|
$ WORK( (J+1-J1+1)+JB*N ), 1 )
|
|
CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
|
|
*
|
|
* K1 identifies if the previous column of the panel has been
|
|
* explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
|
|
* while K1=0 and K2=1 for the rest
|
|
*
|
|
IF( J1.GT.1 ) THEN
|
|
*
|
|
* Not first panel
|
|
*
|
|
K2 = 1
|
|
ELSE
|
|
*
|
|
* First panel
|
|
*
|
|
K2 = 0
|
|
*
|
|
* First update skips the first column
|
|
*
|
|
JB = JB - 1
|
|
END IF
|
|
*
|
|
DO J2 = J+1, N, NB
|
|
NJ = MIN( NB, N-J2+1 )
|
|
*
|
|
* Update (J2, J2) diagonal block with ZGEMV
|
|
*
|
|
J3 = J2
|
|
DO MJ = NJ-1, 1, -1
|
|
CALL ZGEMV( 'No transpose', MJ, JB+1,
|
|
$ -ONE, WORK( J3-J1+1+K1*N ), N,
|
|
$ A( J1-K2, J3 ), 1,
|
|
$ ONE, A( J3, J3 ), LDA )
|
|
J3 = J3 + 1
|
|
END DO
|
|
*
|
|
* Update off-diagonal block of J2-th block row with ZGEMM
|
|
*
|
|
CALL ZGEMM( 'Transpose', 'Transpose',
|
|
$ NJ, N-J3+1, JB+1,
|
|
$ -ONE, A( J1-K2, J2 ), LDA,
|
|
$ WORK( J3-J1+1+K1*N ), N,
|
|
$ ONE, A( J2, J3 ), LDA )
|
|
END DO
|
|
*
|
|
* Recover T( J, J+1 )
|
|
*
|
|
A( J, J+1 ) = ALPHA
|
|
END IF
|
|
*
|
|
* WORK(J+1, 1) stores H(J+1, 1)
|
|
*
|
|
CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
|
|
END IF
|
|
GO TO 10
|
|
ELSE
|
|
*
|
|
* .....................................................
|
|
* Factorize A as L*D*L**T using the lower triangle of A
|
|
* .....................................................
|
|
*
|
|
* copy first column A(1:N, 1) into H(1:N, 1)
|
|
* (stored in WORK(1:N))
|
|
*
|
|
CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
|
|
*
|
|
* J is the main loop index, increasing from 1 to N in steps of
|
|
* JB, where JB is the number of columns factorized by ZLASYF;
|
|
* JB is either NB, or N-J+1 for the last block
|
|
*
|
|
J = 0
|
|
11 CONTINUE
|
|
IF( J.GE.N )
|
|
$ GO TO 20
|
|
*
|
|
* each step of the main loop
|
|
* J is the last column of the previous panel
|
|
* J1 is the first column of the current panel
|
|
* K1 identifies if the previous column of the panel has been
|
|
* explicitly stored, e.g., K1=1 for the first panel, and
|
|
* K1=0 for the rest
|
|
*
|
|
J1 = J+1
|
|
JB = MIN( N-J1+1, NB )
|
|
K1 = MAX(1, J)-J
|
|
*
|
|
* Panel factorization
|
|
*
|
|
CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
|
|
$ A( J+1, MAX(1, J) ), LDA,
|
|
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
|
*
|
|
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
|
*
|
|
DO J2 = J+2, MIN(N, J+JB+1)
|
|
IPIV( J2 ) = IPIV( J2 ) + J
|
|
IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
|
|
CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
|
|
$ A( IPIV(J2), 1 ), LDA )
|
|
END IF
|
|
END DO
|
|
J = J + JB
|
|
*
|
|
* Trailing submatrix update, where
|
|
* A(J2+1, J1-1) stores L(J2+1, J1) and
|
|
* WORK(J2+1, 1) stores H(J2+1, 1)
|
|
*
|
|
IF( J.LT.N ) THEN
|
|
*
|
|
* if first panel and JB=1 (NB=1), then nothing to do
|
|
*
|
|
IF( J1.GT.1 .OR. JB.GT.1 ) THEN
|
|
*
|
|
* Merge rank-1 update with BLAS-3 update
|
|
*
|
|
ALPHA = A( J+1, J )
|
|
A( J+1, J ) = ONE
|
|
CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
|
|
$ WORK( (J+1-J1+1)+JB*N ), 1 )
|
|
CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
|
|
*
|
|
* K1 identifies if the previous column of the panel has been
|
|
* explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
|
|
* while K1=0 and K2=1 for the rest
|
|
*
|
|
IF( J1.GT.1 ) THEN
|
|
*
|
|
* Not first panel
|
|
*
|
|
K2 = 1
|
|
ELSE
|
|
*
|
|
* First panel
|
|
*
|
|
K2 = 0
|
|
*
|
|
* First update skips the first column
|
|
*
|
|
JB = JB - 1
|
|
END IF
|
|
*
|
|
DO J2 = J+1, N, NB
|
|
NJ = MIN( NB, N-J2+1 )
|
|
*
|
|
* Update (J2, J2) diagonal block with ZGEMV
|
|
*
|
|
J3 = J2
|
|
DO MJ = NJ-1, 1, -1
|
|
CALL ZGEMV( 'No transpose', MJ, JB+1,
|
|
$ -ONE, WORK( J3-J1+1+K1*N ), N,
|
|
$ A( J3, J1-K2 ), LDA,
|
|
$ ONE, A( J3, J3 ), 1 )
|
|
J3 = J3 + 1
|
|
END DO
|
|
*
|
|
* Update off-diagonal block in J2-th block column with ZGEMM
|
|
*
|
|
CALL ZGEMM( 'No transpose', 'Transpose',
|
|
$ N-J3+1, NJ, JB+1,
|
|
$ -ONE, WORK( J3-J1+1+K1*N ), N,
|
|
$ A( J2, J1-K2 ), LDA,
|
|
$ ONE, A( J3, J2 ), LDA )
|
|
END DO
|
|
*
|
|
* Recover T( J+1, J )
|
|
*
|
|
A( J+1, J ) = ALPHA
|
|
END IF
|
|
*
|
|
* WORK(J+1, 1) stores H(J+1, 1)
|
|
*
|
|
CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
|
|
END IF
|
|
GO TO 11
|
|
END IF
|
|
*
|
|
20 CONTINUE
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
*
|
|
* End of ZSYTRF_AA
|
|
*
|
|
END
|
|
|