You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
7.4 KiB
271 lines
7.4 KiB
*> \brief \b ZTPCON
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZTPCON + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztpcon.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztpcon.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztpcon.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, NORM, UPLO
|
|
* INTEGER INFO, N
|
|
* DOUBLE PRECISION RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 AP( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZTPCON estimates the reciprocal of the condition number of a packed
|
|
*> triangular matrix A, in either the 1-norm or the infinity-norm.
|
|
*>
|
|
*> The norm of A is computed and an estimate is obtained for
|
|
*> norm(inv(A)), then the reciprocal of the condition number is
|
|
*> computed as
|
|
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NORM
|
|
*> \verbatim
|
|
*> NORM is CHARACTER*1
|
|
*> Specifies whether the 1-norm condition number or the
|
|
*> infinity-norm condition number is required:
|
|
*> = '1' or 'O': 1-norm;
|
|
*> = 'I': Infinity-norm.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': A is upper triangular;
|
|
*> = 'L': A is lower triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> = 'N': A is non-unit triangular;
|
|
*> = 'U': A is unit triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AP
|
|
*> \verbatim
|
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
|
*> The upper or lower triangular matrix A, packed columnwise in
|
|
*> a linear array. The j-th column of A is stored in the array
|
|
*> AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
|
|
*> If DIAG = 'U', the diagonal elements of A are not referenced
|
|
*> and are assumed to be 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCOND
|
|
*> \verbatim
|
|
*> RCOND is DOUBLE PRECISION
|
|
*> The reciprocal of the condition number of the matrix A,
|
|
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, NORM, UPLO
|
|
INTEGER INFO, N
|
|
DOUBLE PRECISION RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 AP( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOUNIT, ONENRM, UPPER
|
|
CHARACTER NORMIN
|
|
INTEGER IX, KASE, KASE1
|
|
DOUBLE PRECISION AINVNM, ANORM, SCALE, SMLNUM, XNORM
|
|
COMPLEX*16 ZDUM
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISAVE( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER IZAMAX
|
|
DOUBLE PRECISION DLAMCH, ZLANTP
|
|
EXTERNAL LSAME, IZAMAX, DLAMCH, ZLANTP
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZDRSCL, ZLACN2, ZLATPS
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DIMAG, MAX
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
*
|
|
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZTPCON', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
RCOND = ONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
RCOND = ZERO
|
|
SMLNUM = DLAMCH( 'Safe minimum' )*DBLE( MAX( 1, N ) )
|
|
*
|
|
* Compute the norm of the triangular matrix A.
|
|
*
|
|
ANORM = ZLANTP( NORM, UPLO, DIAG, N, AP, RWORK )
|
|
*
|
|
* Continue only if ANORM > 0.
|
|
*
|
|
IF( ANORM.GT.ZERO ) THEN
|
|
*
|
|
* Estimate the norm of the inverse of A.
|
|
*
|
|
AINVNM = ZERO
|
|
NORMIN = 'N'
|
|
IF( ONENRM ) THEN
|
|
KASE1 = 1
|
|
ELSE
|
|
KASE1 = 2
|
|
END IF
|
|
KASE = 0
|
|
10 CONTINUE
|
|
CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
|
|
IF( KASE.NE.0 ) THEN
|
|
IF( KASE.EQ.KASE1 ) THEN
|
|
*
|
|
* Multiply by inv(A).
|
|
*
|
|
CALL ZLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
|
|
$ WORK, SCALE, RWORK, INFO )
|
|
ELSE
|
|
*
|
|
* Multiply by inv(A**H).
|
|
*
|
|
CALL ZLATPS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
|
|
$ N, AP, WORK, SCALE, RWORK, INFO )
|
|
END IF
|
|
NORMIN = 'Y'
|
|
*
|
|
* Multiply by 1/SCALE if doing so will not cause overflow.
|
|
*
|
|
IF( SCALE.NE.ONE ) THEN
|
|
IX = IZAMAX( N, WORK, 1 )
|
|
XNORM = CABS1( WORK( IX ) )
|
|
IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
|
|
$ GO TO 20
|
|
CALL ZDRSCL( N, SCALE, WORK, 1 )
|
|
END IF
|
|
GO TO 10
|
|
END IF
|
|
*
|
|
* Compute the estimate of the reciprocal condition number.
|
|
*
|
|
IF( AINVNM.NE.ZERO )
|
|
$ RCOND = ( ONE / ANORM ) / AINVNM
|
|
END IF
|
|
*
|
|
20 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of ZTPCON
|
|
*
|
|
END
|
|
|