You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
450 lines
13 KiB
450 lines
13 KiB
*> \brief \b ZTRSYL
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZTRSYL + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsyl.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsyl.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsyl.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
|
|
* LDC, SCALE, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANA, TRANB
|
|
* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
|
|
* DOUBLE PRECISION SCALE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZTRSYL solves the complex Sylvester matrix equation:
|
|
*>
|
|
*> op(A)*X + X*op(B) = scale*C or
|
|
*> op(A)*X - X*op(B) = scale*C,
|
|
*>
|
|
*> where op(A) = A or A**H, and A and B are both upper triangular. A is
|
|
*> M-by-M and B is N-by-N; the right hand side C and the solution X are
|
|
*> M-by-N; and scale is an output scale factor, set <= 1 to avoid
|
|
*> overflow in X.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANA
|
|
*> \verbatim
|
|
*> TRANA is CHARACTER*1
|
|
*> Specifies the option op(A):
|
|
*> = 'N': op(A) = A (No transpose)
|
|
*> = 'C': op(A) = A**H (Conjugate transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANB
|
|
*> \verbatim
|
|
*> TRANB is CHARACTER*1
|
|
*> Specifies the option op(B):
|
|
*> = 'N': op(B) = B (No transpose)
|
|
*> = 'C': op(B) = B**H (Conjugate transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ISGN
|
|
*> \verbatim
|
|
*> ISGN is INTEGER
|
|
*> Specifies the sign in the equation:
|
|
*> = +1: solve op(A)*X + X*op(B) = scale*C
|
|
*> = -1: solve op(A)*X - X*op(B) = scale*C
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The order of the matrix A, and the number of rows in the
|
|
*> matrices X and C. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix B, and the number of columns in the
|
|
*> matrices X and C. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,M)
|
|
*> The upper triangular matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDB,N)
|
|
*> The upper triangular matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX*16 array, dimension (LDC,N)
|
|
*> On entry, the M-by-N right hand side matrix C.
|
|
*> On exit, C is overwritten by the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is DOUBLE PRECISION
|
|
*> The scale factor, scale, set <= 1 to avoid overflow in X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> = 1: A and B have common or very close eigenvalues; perturbed
|
|
*> values were used to solve the equation (but the matrices
|
|
*> A and B are unchanged).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16SYcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
|
|
$ LDC, SCALE, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANA, TRANB
|
|
INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
|
|
DOUBLE PRECISION SCALE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOTRNA, NOTRNB
|
|
INTEGER J, K, L
|
|
DOUBLE PRECISION BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
|
|
$ SMLNUM
|
|
COMPLEX*16 A11, SUML, SUMR, VEC, X11
|
|
* ..
|
|
* .. Local Arrays ..
|
|
DOUBLE PRECISION DUM( 1 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
|
|
EXTERNAL LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZDSCAL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and Test input parameters
|
|
*
|
|
NOTRNA = LSAME( TRANA, 'N' )
|
|
NOTRNB = LSAME( TRANB, 'N' )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
|
|
INFO = -3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -11
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZTRSYL', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
SCALE = ONE
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Set constants to control overflow
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SMLNUM*DBLE( M*N ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ),
|
|
$ EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) )
|
|
SGN = ISGN
|
|
*
|
|
IF( NOTRNA .AND. NOTRNB ) THEN
|
|
*
|
|
* Solve A*X + ISGN*X*B = scale*C.
|
|
*
|
|
* The (K,L)th block of X is determined starting from
|
|
* bottom-left corner column by column by
|
|
*
|
|
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
|
|
*
|
|
* Where
|
|
* M L-1
|
|
* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
|
|
* I=K+1 J=1
|
|
*
|
|
DO 30 L = 1, N
|
|
DO 20 K = M, 1, -1
|
|
*
|
|
SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
|
|
$ C( MIN( K+1, M ), L ), 1 )
|
|
SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
|
|
VEC = C( K, L ) - ( SUML+SGN*SUMR )
|
|
*
|
|
SCALOC = ONE
|
|
A11 = A( K, K ) + SGN*B( L, L )
|
|
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
|
|
IF( DA11.LE.SMIN ) THEN
|
|
A11 = SMIN
|
|
DA11 = SMIN
|
|
INFO = 1
|
|
END IF
|
|
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
|
|
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
|
|
IF( DB.GT.BIGNUM*DA11 )
|
|
$ SCALOC = ONE / DB
|
|
END IF
|
|
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
|
|
*
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 10 J = 1, N
|
|
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
|
|
10 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
C( K, L ) = X11
|
|
*
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
|
|
*
|
|
* Solve A**H *X + ISGN*X*B = scale*C.
|
|
*
|
|
* The (K,L)th block of X is determined starting from
|
|
* upper-left corner column by column by
|
|
*
|
|
* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
|
|
*
|
|
* Where
|
|
* K-1 L-1
|
|
* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
|
|
* I=1 J=1
|
|
*
|
|
DO 60 L = 1, N
|
|
DO 50 K = 1, M
|
|
*
|
|
SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
|
|
SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
|
|
VEC = C( K, L ) - ( SUML+SGN*SUMR )
|
|
*
|
|
SCALOC = ONE
|
|
A11 = DCONJG( A( K, K ) ) + SGN*B( L, L )
|
|
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
|
|
IF( DA11.LE.SMIN ) THEN
|
|
A11 = SMIN
|
|
DA11 = SMIN
|
|
INFO = 1
|
|
END IF
|
|
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
|
|
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
|
|
IF( DB.GT.BIGNUM*DA11 )
|
|
$ SCALOC = ONE / DB
|
|
END IF
|
|
*
|
|
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
|
|
*
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 40 J = 1, N
|
|
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
|
|
40 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
C( K, L ) = X11
|
|
*
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
|
|
*
|
|
* Solve A**H*X + ISGN*X*B**H = C.
|
|
*
|
|
* The (K,L)th block of X is determined starting from
|
|
* upper-right corner column by column by
|
|
*
|
|
* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
|
|
*
|
|
* Where
|
|
* K-1
|
|
* R(K,L) = SUM [A**H(I,K)*X(I,L)] +
|
|
* I=1
|
|
* N
|
|
* ISGN*SUM [X(K,J)*B**H(L,J)].
|
|
* J=L+1
|
|
*
|
|
DO 90 L = N, 1, -1
|
|
DO 80 K = 1, M
|
|
*
|
|
SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
|
|
SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
|
|
$ B( L, MIN( L+1, N ) ), LDB )
|
|
VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
|
|
*
|
|
SCALOC = ONE
|
|
A11 = DCONJG( A( K, K )+SGN*B( L, L ) )
|
|
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
|
|
IF( DA11.LE.SMIN ) THEN
|
|
A11 = SMIN
|
|
DA11 = SMIN
|
|
INFO = 1
|
|
END IF
|
|
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
|
|
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
|
|
IF( DB.GT.BIGNUM*DA11 )
|
|
$ SCALOC = ONE / DB
|
|
END IF
|
|
*
|
|
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
|
|
*
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 70 J = 1, N
|
|
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
|
|
70 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
C( K, L ) = X11
|
|
*
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
*
|
|
ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
|
|
*
|
|
* Solve A*X + ISGN*X*B**H = C.
|
|
*
|
|
* The (K,L)th block of X is determined starting from
|
|
* bottom-left corner column by column by
|
|
*
|
|
* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
|
|
*
|
|
* Where
|
|
* M N
|
|
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)]
|
|
* I=K+1 J=L+1
|
|
*
|
|
DO 120 L = N, 1, -1
|
|
DO 110 K = M, 1, -1
|
|
*
|
|
SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
|
|
$ C( MIN( K+1, M ), L ), 1 )
|
|
SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
|
|
$ B( L, MIN( L+1, N ) ), LDB )
|
|
VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
|
|
*
|
|
SCALOC = ONE
|
|
A11 = A( K, K ) + SGN*DCONJG( B( L, L ) )
|
|
DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
|
|
IF( DA11.LE.SMIN ) THEN
|
|
A11 = SMIN
|
|
DA11 = SMIN
|
|
INFO = 1
|
|
END IF
|
|
DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
|
|
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
|
|
IF( DB.GT.BIGNUM*DA11 )
|
|
$ SCALOC = ONE / DB
|
|
END IF
|
|
*
|
|
X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
|
|
*
|
|
IF( SCALOC.NE.ONE ) THEN
|
|
DO 100 J = 1, N
|
|
CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
|
|
100 CONTINUE
|
|
SCALE = SCALE*SCALOC
|
|
END IF
|
|
C( K, L ) = X11
|
|
*
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZTRSYL
|
|
*
|
|
END
|
|
|