Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1142 lines
41 KiB

*> \brief \b ZTRSYL3
*
* Definition:
* ===========
*
*
*> \par Purpose
* =============
*>
*> \verbatim
*>
*> ZTRSYL3 solves the complex Sylvester matrix equation:
*>
*> op(A)*X + X*op(B) = scale*C or
*> op(A)*X - X*op(B) = scale*C,
*>
*> where op(A) = A or A**H, and A and B are both upper triangular. A is
*> M-by-M and B is N-by-N; the right hand side C and the solution X are
*> M-by-N; and scale is an output scale factor, set <= 1 to avoid
*> overflow in X.
*>
*> This is the block version of the algorithm.
*> \endverbatim
*
* Arguments
* =========
*
*> \param[in] TRANA
*> \verbatim
*> TRANA is CHARACTER*1
*> Specifies the option op(A):
*> = 'N': op(A) = A (No transpose)
*> = 'C': op(A) = A**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] TRANB
*> \verbatim
*> TRANB is CHARACTER*1
*> Specifies the option op(B):
*> = 'N': op(B) = B (No transpose)
*> = 'C': op(B) = B**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] ISGN
*> \verbatim
*> ISGN is INTEGER
*> Specifies the sign in the equation:
*> = +1: solve op(A)*X + X*op(B) = scale*C
*> = -1: solve op(A)*X - X*op(B) = scale*C
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The order of the matrix A, and the number of rows in the
*> matrices X and C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix B, and the number of columns in the
*> matrices X and C. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,M)
*> The upper triangular matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,N)
*> The upper triangular matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (LDC,N)
*> On entry, the M-by-N right hand side matrix C.
*> On exit, C is overwritten by the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M)
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> The scale factor, scale, set <= 1 to avoid overflow in X.
*> \endverbatim
*>
*> \param[out] SWORK
*> \verbatim
*> SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS),
*> MAX(1,COLS)).
*> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS
*> and SWORK(2) returns the optimal COLS.
*> \endverbatim
*>
*> \param[in] LDSWORK
*> \verbatim
*> LDSWORK is INTEGER
*> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1)
*> and NB is the optimal block size.
*>
*> If LDSWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal dimensions of the SWORK matrix,
*> returns these values as the first and second entry of the SWORK
*> matrix, and no error message related LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> = 1: A and B have common or very close eigenvalues; perturbed
*> values were used to solve the equation (but the matrices
*> A and B are unchanged).
*> \endverbatim
*
*> \ingroup complex16SYcomputational
*
* =====================================================================
* References:
* E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of
* algorithms: The triangular Sylvester equation, ACM Transactions
* on Mathematical Software (TOMS), volume 29, pages 218--243.
*
* A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel
* Solution of the Triangular Sylvester Equation. Lecture Notes in
* Computer Science, vol 12043, pages 82--92, Springer.
*
* Contributor:
* Angelika Schwarz, Umea University, Sweden.
*
* =====================================================================
SUBROUTINE ZTRSYL3( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
$ LDC, SCALE, SWORK, LDSWORK, INFO )
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER INFO, ISGN, LDA, LDB, LDC, LDSWORK, M, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
DOUBLE PRECISION SWORK( LDSWORK, * )
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOTRNA, NOTRNB, LQUERY
INTEGER AWRK, BWRK, I, I1, I2, IINFO, J, J1, J2, JJ,
$ K, K1, K2, L, L1, L2, LL, NBA, NB, NBB
DOUBLE PRECISION ANRM, BIGNUM, BNRM, CNRM, SCAL, SCALOC,
$ SCAMIN, SGN, XNRM, BUF, SMLNUM
COMPLEX*16 CSGN
* ..
* .. Local Arrays ..
DOUBLE PRECISION WNRM( MAX( M, N ) )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLARMM, ZLANGE
EXTERNAL DLAMCH, DLARMM, ILAENV, LSAME, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZGEMM, ZLASCL, ZTRSYL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, EXPONENT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and Test input parameters
*
NOTRNA = LSAME( TRANA, 'N' )
NOTRNB = LSAME( TRANB, 'N' )
*
* Use the same block size for all matrices.
*
NB = MAX( 8, ILAENV( 1, 'ZTRSYL', '', M, N, -1, -1) )
*
* Compute number of blocks in A and B
*
NBA = MAX( 1, (M + NB - 1) / NB )
NBB = MAX( 1, (N + NB - 1) / NB )
*
* Compute workspace
*
INFO = 0
LQUERY = ( LDSWORK.EQ.-1 )
IF( LQUERY ) THEN
LDSWORK = 2
SWORK(1,1) = MAX( NBA, NBB )
SWORK(2,1) = 2 * NBB + NBA
END IF
*
* Test the input arguments
*
IF( .NOT.NOTRNA .AND. .NOT. LSAME( TRANA, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRNB .AND. .NOT. LSAME( TRANB, 'C' ) ) THEN
INFO = -2
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTRSYL3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
SCALE = ONE
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Use unblocked code for small problems or if insufficient
* workspace is provided
*
IF( MIN( NBA, NBB ).EQ.1 .OR. LDSWORK.LT.MAX( NBA, NBB ) ) THEN
CALL ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB,
$ C, LDC, SCALE, INFO )
RETURN
END IF
*
* Set constants to control overflow
*
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
*
* Set local scaling factors.
*
DO L = 1, NBB
DO K = 1, NBA
SWORK( K, L ) = ONE
END DO
END DO
*
* Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero.
* This scaling is to ensure compatibility with TRSYL and may get flushed.
*
BUF = ONE
*
* Compute upper bounds of blocks of A and B
*
AWRK = NBB
DO K = 1, NBA
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = K, NBA
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, M ) + 1
IF( NOTRNA ) THEN
SWORK( K, AWRK + L ) = ZLANGE( 'I', K2-K1, L2-L1,
$ A( K1, L1 ), LDA, WNRM )
ELSE
SWORK( L, AWRK + K ) = ZLANGE( '1', K2-K1, L2-L1,
$ A( K1, L1 ), LDA, WNRM )
END IF
END DO
END DO
BWRK = NBB + NBA
DO K = 1, NBB
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, N ) + 1
DO L = K, NBB
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
IF( NOTRNB ) THEN
SWORK( K, BWRK + L ) = ZLANGE( 'I', K2-K1, L2-L1,
$ B( K1, L1 ), LDB, WNRM )
ELSE
SWORK( L, BWRK + K ) = ZLANGE( '1', K2-K1, L2-L1,
$ B( K1, L1 ), LDB, WNRM )
END IF
END DO
END DO
*
SGN = DBLE( ISGN )
CSGN = DCMPLX( SGN, ZERO )
*
IF( NOTRNA .AND. NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-left corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* M L-1
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)].
* I=K+1 J=1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = NBA, 1, -1
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = 1, NBB
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
*
CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K - 1, 1, -1
*
* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
*
I1 = (I - 1) * NB + 1
I2 = MIN( I * NB, M ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1)
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1)
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -CONE,
$ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
$ CONE, C( I1, L1 ), LDC )
*
END DO
*
DO J = L + 1, NBB
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
*
J1 = (J - 1) * NB + 1
J2 = MIN( J * NB, N ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK(L, BWRK + J)
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -CSGN,
$ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
$ CONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
*
* Solve A**H *X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* upper-left corner column by column by
*
* A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* K-1 L-1
* R(K,L) = SUM [A(I,K)**H*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]
* I=1 J=1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = 1, NBA
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = 1, NBB
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
*
CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K + 1, NBA
*
* C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L )
*
I1 = (I - 1) * NB + 1
I2 = MIN( I * NB, M ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to to C( I, L ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'C', 'N', I2-I1, L2-L1, K2-K1, -CONE,
$ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
$ CONE, C( I1, L1 ), LDC )
END DO
*
DO J = L + 1, NBB
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
*
J1 = (J - 1) * NB + 1
J2 = MIN( J * NB, N ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to to C( K, J ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -CSGN,
$ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
$ CONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A**H *X + ISGN*X*B**H = scale*C.
*
* The (K,L)th block of X is determined starting from
* top-right corner column by column by
*
* A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L)
*
* Where
* K-1 N
* R(K,L) = SUM [A(I,K)**H*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H].
* I=1 J=L+1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = 1, NBA
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = NBB, 1, -1
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
*
CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K + 1, NBA
*
* C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L )
*
I1 = (I - 1) * NB + 1
I2 = MIN( I * NB, M ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'C', 'N', I2-I1, L2-L1, K2-K1, -CONE,
$ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
$ CONE, C( I1, L1 ), LDC )
END DO
*
DO J = 1, L - 1
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H
*
J1 = (J - 1) * NB + 1
J2 = MIN( J * NB, N ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1)
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'C', K2-K1, J2-J1, L2-L1, -CSGN,
$ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
$ CONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B**H = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-right corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L)
*
* Where
* M N
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H].
* I=K+1 J=L+1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = NBA, 1, -1
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = NBB, 1, -1
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
*
CALL ZTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = ZLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = 1, K - 1
*
* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
*
I1 = (I - 1) * NB + 1
I2 = MIN( I * NB, M ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -CONE,
$ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
$ CONE, C( I1, L1 ), LDC )
*
END DO
*
DO J = 1, L - 1
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H
*
J1 = (J - 1) * NB + 1
J2 = MIN( J * NB, N ) + 1
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = ZLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL ZGEMM( 'N', 'C', K2-K1, J2-J1, L2-L1, -CSGN,
$ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
$ CONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
*
END IF
*
* Reduce local scaling factors
*
SCALE = SWORK( 1, 1 )
DO K = 1, NBA
DO L = 1, NBB
SCALE = MIN( SCALE, SWORK( K, L ) )
END DO
END DO
IF( SCALE .EQ. ZERO ) THEN
*
* The magnitude of the largest entry of the solution is larger
* than the product of BIGNUM**2 and cannot be represented in the
* form (1/SCALE)*X if SCALE is DOUBLE PRECISION. Set SCALE to
* zero and give up.
*
SWORK(1,1) = MAX( NBA, NBB )
SWORK(2,1) = 2 * NBB + NBA
RETURN
END IF
*
* Realize consistent scaling
*
DO K = 1, NBA
K1 = (K - 1) * NB + 1
K2 = MIN( K * NB, M ) + 1
DO L = 1, NBB
L1 = (L - 1) * NB + 1
L2 = MIN( L * NB, N ) + 1
SCAL = SCALE / SWORK( K, L )
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL ZDSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
END DO
END DO
*
IF( BUF .NE. ONE .AND. BUF.GT.ZERO ) THEN
*
* Decrease SCALE as much as possible.
*
SCALOC = MIN( SCALE / SMLNUM, ONE / BUF )
BUF = BUF * SCALOC
SCALE = SCALE / SCALOC
END IF
*
IF( BUF.NE.ONE .AND. BUF.GT.ZERO ) THEN
*
* In case of overly aggressive scaling during the computation,
* flushing of the global scale factor may be prevented by
* undoing some of the scaling. This step is to ensure that
* this routine flushes only scale factors that TRSYL also
* flushes and be usable as a drop-in replacement.
*
* How much can the normwise largest entry be upscaled?
*
SCAL = MAX( ABS( DBLE( C( 1, 1 ) ) ),
$ ABS( DIMAG( C ( 1, 1 ) ) ) )
DO K = 1, M
DO L = 1, N
SCAL = MAX( SCAL, ABS( DBLE ( C( K, L ) ) ),
$ ABS( DIMAG ( C( K, L ) ) ) )
END DO
END DO
*
* Increase BUF as close to 1 as possible and apply scaling.
*
SCALOC = MIN( BIGNUM / SCAL, ONE / BUF )
BUF = BUF * SCALOC
CALL ZLASCL( 'G', -1, -1, ONE, SCALOC, M, N, C, LDC, IINFO )
END IF
*
* Combine with buffer scaling factor. SCALE will be flushed if
* BUF is less than one here.
*
SCALE = SCALE * BUF
*
* Restore workspace dimensions
*
SWORK(1,1) = MAX( NBA, NBB )
SWORK(2,1) = 2 * NBB + NBA
*
RETURN
*
* End of ZTRSYL3
*
END