You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
382 lines
12 KiB
382 lines
12 KiB
*> \brief \b ZUNBDB4
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZUNBDB4 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb4.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb4.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb4.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
|
|
* TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION PHI(*), THETA(*)
|
|
* COMPLEX*16 PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
|
|
* $ WORK(*), X11(LDX11,*), X21(LDX21,*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*>\verbatim
|
|
*>
|
|
*> ZUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
|
|
*> matrix X with orthonormal columns:
|
|
*>
|
|
*> [ B11 ]
|
|
*> [ X11 ] [ P1 | ] [ 0 ]
|
|
*> [-----] = [---------] [-----] Q1**T .
|
|
*> [ X21 ] [ | P2 ] [ B21 ]
|
|
*> [ 0 ]
|
|
*>
|
|
*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
|
|
*> M-P, or Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB3 handle cases in
|
|
*> which M-Q is not the minimum dimension.
|
|
*>
|
|
*> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
|
|
*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
|
|
*> Householder vectors.
|
|
*>
|
|
*> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
|
|
*> implicitly by angles THETA, PHI.
|
|
*>
|
|
*>\endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows X11 plus the number of rows in X21.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows in X11. 0 <= P <= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Q
|
|
*> \verbatim
|
|
*> Q is INTEGER
|
|
*> The number of columns in X11 and X21. 0 <= Q <= M and
|
|
*> M-Q <= min(P,M-P,Q).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X11
|
|
*> \verbatim
|
|
*> X11 is COMPLEX*16 array, dimension (LDX11,Q)
|
|
*> On entry, the top block of the matrix X to be reduced. On
|
|
*> exit, the columns of tril(X11) specify reflectors for P1 and
|
|
*> the rows of triu(X11,1) specify reflectors for Q1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX11
|
|
*> \verbatim
|
|
*> LDX11 is INTEGER
|
|
*> The leading dimension of X11. LDX11 >= P.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] X21
|
|
*> \verbatim
|
|
*> X21 is COMPLEX*16 array, dimension (LDX21,Q)
|
|
*> On entry, the bottom block of the matrix X to be reduced. On
|
|
*> exit, the columns of tril(X21) specify reflectors for P2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX21
|
|
*> \verbatim
|
|
*> LDX21 is INTEGER
|
|
*> The leading dimension of X21. LDX21 >= M-P.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] THETA
|
|
*> \verbatim
|
|
*> THETA is DOUBLE PRECISION array, dimension (Q)
|
|
*> The entries of the bidiagonal blocks B11, B21 are defined by
|
|
*> THETA and PHI. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PHI
|
|
*> \verbatim
|
|
*> PHI is DOUBLE PRECISION array, dimension (Q-1)
|
|
*> The entries of the bidiagonal blocks B11, B21 are defined by
|
|
*> THETA and PHI. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUP1
|
|
*> \verbatim
|
|
*> TAUP1 is COMPLEX*16 array, dimension (M-Q)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> P1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUP2
|
|
*> \verbatim
|
|
*> TAUP2 is COMPLEX*16 array, dimension (M-Q)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> P2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUQ1
|
|
*> \verbatim
|
|
*> TAUQ1 is COMPLEX*16 array, dimension (Q)
|
|
*> The scalar factors of the elementary reflectors that define
|
|
*> Q1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PHANTOM
|
|
*> \verbatim
|
|
*> PHANTOM is COMPLEX*16 array, dimension (M)
|
|
*> The routine computes an M-by-1 column vector Y that is
|
|
*> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
|
|
*> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
|
|
*> Y(P+1:M), respectively.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= M-Q.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
|
|
*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
|
|
*> in each bidiagonal band is a product of a sine or cosine of a THETA
|
|
*> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
|
|
*>
|
|
*> P1, P2, and Q1 are represented as products of elementary reflectors.
|
|
*> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
|
|
*> and ZUNGLQ.
|
|
*> \endverbatim
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
|
*> Algorithms, 50(1):33-65, 2009.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
|
|
$ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION PHI(*), THETA(*)
|
|
COMPLEX*16 PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
|
|
$ WORK(*), X11(LDX11,*), X21(LDX21,*)
|
|
* ..
|
|
*
|
|
* ====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 NEGONE, ONE, ZERO
|
|
PARAMETER ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
|
|
$ ZERO = (0.0D0,0.0D0) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION C, S
|
|
INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
|
|
$ LORBDB5, LWORKMIN, LWORKOPT
|
|
LOGICAL LQUERY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLARF, ZLARFGP, ZUNBDB5, ZDROT, ZSCAL, ZLACGV,
|
|
$ XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DZNRM2
|
|
EXTERNAL DZNRM2
|
|
* ..
|
|
* .. Intrinsic Function ..
|
|
INTRINSIC ATAN2, COS, MAX, SIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test input arguments
|
|
*
|
|
INFO = 0
|
|
LQUERY = LWORK .EQ. -1
|
|
*
|
|
IF( M .LT. 0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
|
|
INFO = -2
|
|
ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
*
|
|
IF( INFO .EQ. 0 ) THEN
|
|
ILARF = 2
|
|
LLARF = MAX( Q-1, P-1, M-P-1 )
|
|
IORBDB5 = 2
|
|
LORBDB5 = Q
|
|
LWORKOPT = ILARF + LLARF - 1
|
|
LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
|
|
LWORKMIN = LWORKOPT
|
|
WORK(1) = LWORKOPT
|
|
IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -14
|
|
END IF
|
|
END IF
|
|
IF( INFO .NE. 0 ) THEN
|
|
CALL XERBLA( 'ZUNBDB4', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Reduce columns 1, ..., M-Q of X11 and X21
|
|
*
|
|
DO I = 1, M-Q
|
|
*
|
|
IF( I .EQ. 1 ) THEN
|
|
DO J = 1, M
|
|
PHANTOM(J) = ZERO
|
|
END DO
|
|
CALL ZUNBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
|
|
$ X11, LDX11, X21, LDX21, WORK(IORBDB5),
|
|
$ LORBDB5, CHILDINFO )
|
|
CALL ZSCAL( P, NEGONE, PHANTOM(1), 1 )
|
|
CALL ZLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
|
|
CALL ZLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
|
|
THETA(I) = ATAN2( DBLE( PHANTOM(1) ), DBLE( PHANTOM(P+1) ) )
|
|
C = COS( THETA(I) )
|
|
S = SIN( THETA(I) )
|
|
PHANTOM(1) = ONE
|
|
PHANTOM(P+1) = ONE
|
|
CALL ZLARF( 'L', P, Q, PHANTOM(1), 1, DCONJG(TAUP1(1)), X11,
|
|
$ LDX11, WORK(ILARF) )
|
|
CALL ZLARF( 'L', M-P, Q, PHANTOM(P+1), 1, DCONJG(TAUP2(1)),
|
|
$ X21, LDX21, WORK(ILARF) )
|
|
ELSE
|
|
CALL ZUNBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
|
|
$ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
|
|
$ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
|
|
CALL ZSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
|
|
CALL ZLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
|
|
CALL ZLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
|
|
$ TAUP2(I) )
|
|
THETA(I) = ATAN2( DBLE( X11(I,I-1) ), DBLE( X21(I,I-1) ) )
|
|
C = COS( THETA(I) )
|
|
S = SIN( THETA(I) )
|
|
X11(I,I-1) = ONE
|
|
X21(I,I-1) = ONE
|
|
CALL ZLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1,
|
|
$ DCONJG(TAUP1(I)), X11(I,I), LDX11, WORK(ILARF) )
|
|
CALL ZLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1,
|
|
$ DCONJG(TAUP2(I)), X21(I,I), LDX21, WORK(ILARF) )
|
|
END IF
|
|
*
|
|
CALL ZDROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
|
|
CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
|
|
CALL ZLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
|
|
C = DBLE( X21(I,I) )
|
|
X21(I,I) = ONE
|
|
CALL ZLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
|
|
$ X11(I+1,I), LDX11, WORK(ILARF) )
|
|
CALL ZLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
|
|
$ X21(I+1,I), LDX21, WORK(ILARF) )
|
|
CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
|
|
IF( I .LT. M-Q ) THEN
|
|
S = SQRT( DZNRM2( P-I, X11(I+1,I), 1 )**2
|
|
$ + DZNRM2( M-P-I, X21(I+1,I), 1 )**2 )
|
|
PHI(I) = ATAN2( S, C )
|
|
END IF
|
|
*
|
|
END DO
|
|
*
|
|
* Reduce the bottom-right portion of X11 to [ I 0 ]
|
|
*
|
|
DO I = M - Q + 1, P
|
|
CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
|
|
CALL ZLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
|
|
X11(I,I) = ONE
|
|
CALL ZLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
|
|
$ X11(I+1,I), LDX11, WORK(ILARF) )
|
|
CALL ZLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
|
|
$ X21(M-Q+1,I), LDX21, WORK(ILARF) )
|
|
CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
|
|
END DO
|
|
*
|
|
* Reduce the bottom-right portion of X21 to [ 0 I ]
|
|
*
|
|
DO I = P + 1, Q
|
|
CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
|
|
CALL ZLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
|
|
$ TAUQ1(I) )
|
|
X21(M-Q+I-P,I) = ONE
|
|
CALL ZLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
|
|
$ X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
|
|
CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
|
|
END DO
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZUNBDB4
|
|
*
|
|
END
|
|
|
|
|