You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
7.3 KiB
280 lines
7.3 KiB
*> \brief \b ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZUNMR2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
|
|
* WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIDE, TRANS
|
|
* INTEGER INFO, K, LDA, LDC, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZUNMR2 overwrites the general complex m-by-n matrix C with
|
|
*>
|
|
*> Q * C if SIDE = 'L' and TRANS = 'N', or
|
|
*>
|
|
*> Q**H* C if SIDE = 'L' and TRANS = 'C', or
|
|
*>
|
|
*> C * Q if SIDE = 'R' and TRANS = 'N', or
|
|
*>
|
|
*> C * Q**H if SIDE = 'R' and TRANS = 'C',
|
|
*>
|
|
*> where Q is a complex unitary matrix defined as the product of k
|
|
*> elementary reflectors
|
|
*>
|
|
*> Q = H(1)**H H(2)**H . . . H(k)**H
|
|
*>
|
|
*> as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n
|
|
*> if SIDE = 'R'.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply Q or Q**H from the Left
|
|
*> = 'R': apply Q or Q**H from the Right
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': apply Q (No transpose)
|
|
*> = 'C': apply Q**H (Conjugate transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix C. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix C. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines
|
|
*> the matrix Q.
|
|
*> If SIDE = 'L', M >= K >= 0;
|
|
*> if SIDE = 'R', N >= K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension
|
|
*> (LDA,M) if SIDE = 'L',
|
|
*> (LDA,N) if SIDE = 'R'
|
|
*> The i-th row must contain the vector which defines the
|
|
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
*> ZGERQF in the last k rows of its array argument A.
|
|
*> A is modified by the routine but restored on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,K).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (K)
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i), as returned by ZGERQF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX*16 array, dimension (LDC,N)
|
|
*> On entry, the m-by-n matrix C.
|
|
*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension
|
|
*> (N) if SIDE = 'L',
|
|
*> (M) if SIDE = 'R'
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
|
|
$ WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIDE, TRANS
|
|
INTEGER INFO, K, LDA, LDC, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE
|
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LEFT, NOTRAN
|
|
INTEGER I, I1, I2, I3, MI, NI, NQ
|
|
COMPLEX*16 AII, TAUI
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZLACGV, ZLARF
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DCONJG, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LEFT = LSAME( SIDE, 'L' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
*
|
|
* NQ is the order of Q
|
|
*
|
|
IF( LEFT ) THEN
|
|
NQ = M
|
|
ELSE
|
|
NQ = N
|
|
END IF
|
|
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZUNMR2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
|
|
I1 = 1
|
|
I2 = K
|
|
I3 = 1
|
|
ELSE
|
|
I1 = K
|
|
I2 = 1
|
|
I3 = -1
|
|
END IF
|
|
*
|
|
IF( LEFT ) THEN
|
|
NI = N
|
|
ELSE
|
|
MI = M
|
|
END IF
|
|
*
|
|
DO 10 I = I1, I2, I3
|
|
IF( LEFT ) THEN
|
|
*
|
|
* H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
|
|
*
|
|
MI = M - K + I
|
|
ELSE
|
|
*
|
|
* H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
|
|
*
|
|
NI = N - K + I
|
|
END IF
|
|
*
|
|
* Apply H(i) or H(i)**H
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
TAUI = DCONJG( TAU( I ) )
|
|
ELSE
|
|
TAUI = TAU( I )
|
|
END IF
|
|
CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
|
|
AII = A( I, NQ-K+I )
|
|
A( I, NQ-K+I ) = ONE
|
|
CALL ZLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAUI, C, LDC, WORK )
|
|
A( I, NQ-K+I ) = AII
|
|
CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
|
|
10 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of ZUNMR2
|
|
*
|
|
END
|
|
|