Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

954 lines
32 KiB

*> \brief \b CDRGSX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B,
* AI, BI, Z, Q, ALPHA, BETA, C, LDC, S, WORK,
* LWORK, RWORK, IWORK, LIWORK, BWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
* $ NOUT, NSIZE
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * )
* INTEGER IWORK( * )
* REAL RWORK( * ), S( * )
* COMPLEX A( LDA, * ), AI( LDA, * ), ALPHA( * ),
* $ B( LDA, * ), BETA( * ), BI( LDA, * ),
* $ C( LDC, * ), Q( LDA, * ), WORK( * ),
* $ Z( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDRGSX checks the nonsymmetric generalized eigenvalue (Schur form)
*> problem expert driver CGGESX.
*>
*> CGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate
*> transpose, S and T are upper triangular (i.e., in generalized Schur
*> form), and Q and Z are unitary. It also computes the generalized
*> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus,
*> w(j) = alpha(j)/beta(j) is a root of the characteristic equation
*>
*> det( A - w(j) B ) = 0
*>
*> Optionally it also reorders the eigenvalues so that a selected
*> cluster of eigenvalues appears in the leading diagonal block of the
*> Schur forms; computes a reciprocal condition number for the average
*> of the selected eigenvalues; and computes a reciprocal condition
*> number for the right and left deflating subspaces corresponding to
*> the selected eigenvalues.
*>
*> When CDRGSX is called with NSIZE > 0, five (5) types of built-in
*> matrix pairs are used to test the routine CGGESX.
*>
*> When CDRGSX is called with NSIZE = 0, it reads in test matrix data
*> to test CGGESX.
*> (need more details on what kind of read-in data are needed).
*>
*> For each matrix pair, the following tests will be performed and
*> compared with the threshold THRESH except for the tests (7) and (9):
*>
*> (1) | A - Q S Z' | / ( |A| n ulp )
*>
*> (2) | B - Q T Z' | / ( |B| n ulp )
*>
*> (3) | I - QQ' | / ( n ulp )
*>
*> (4) | I - ZZ' | / ( n ulp )
*>
*> (5) if A is in Schur form (i.e. triangular form)
*>
*> (6) maximum over j of D(j) where:
*>
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
*> D(j) = ------------------------ + -----------------------
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
*>
*> (7) if sorting worked and SDIM is the number of eigenvalues
*> which were selected.
*>
*> (8) the estimated value DIF does not differ from the true values of
*> Difu and Difl more than a factor 10*THRESH. If the estimate DIF
*> equals zero the corresponding true values of Difu and Difl
*> should be less than EPS*norm(A, B). If the true value of Difu
*> and Difl equal zero, the estimate DIF should be less than
*> EPS*norm(A, B).
*>
*> (9) If INFO = N+3 is returned by CGGESX, the reordering "failed"
*> and we check that DIF = PL = PR = 0 and that the true value of
*> Difu and Difl is < EPS*norm(A, B). We count the events when
*> INFO=N+3.
*>
*> For read-in test matrices, the same tests are run except that the
*> exact value for DIF (and PL) is input data. Additionally, there is
*> one more test run for read-in test matrices:
*>
*> (10) the estimated value PL does not differ from the true value of
*> PLTRU more than a factor THRESH. If the estimate PL equals
*> zero the corresponding true value of PLTRU should be less than
*> EPS*norm(A, B). If the true value of PLTRU equal zero, the
*> estimate PL should be less than EPS*norm(A, B).
*>
*> Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1)
*> matrix pairs are generated and tested. NSIZE should be kept small.
*>
*> SVD (routine CGESVD) is used for computing the true value of DIF_u
*> and DIF_l when testing the built-in test problems.
*>
*> Built-in Test Matrices
*> ======================
*>
*> All built-in test matrices are the 2 by 2 block of triangular
*> matrices
*>
*> A = [ A11 A12 ] and B = [ B11 B12 ]
*> [ A22 ] [ B22 ]
*>
*> where for different type of A11 and A22 are given as the following.
*> A12 and B12 are chosen so that the generalized Sylvester equation
*>
*> A11*R - L*A22 = -A12
*> B11*R - L*B22 = -B12
*>
*> have prescribed solution R and L.
*>
*> Type 1: A11 = J_m(1,-1) and A_22 = J_k(1-a,1).
*> B11 = I_m, B22 = I_k
*> where J_k(a,b) is the k-by-k Jordan block with ``a'' on
*> diagonal and ``b'' on superdiagonal.
*>
*> Type 2: A11 = (a_ij) = ( 2(.5-sin(i)) ) and
*> B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m
*> A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and
*> B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k
*>
*> Type 3: A11, A22 and B11, B22 are chosen as for Type 2, but each
*> second diagonal block in A_11 and each third diagonal block
*> in A_22 are made as 2 by 2 blocks.
*>
*> Type 4: A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) )
*> for i=1,...,m, j=1,...,m and
*> A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) )
*> for i=m+1,...,k, j=m+1,...,k
*>
*> Type 5: (A,B) and have potentially close or common eigenvalues and
*> very large departure from block diagonality A_11 is chosen
*> as the m x m leading submatrix of A_1:
*> | 1 b |
*> | -b 1 |
*> | 1+d b |
*> | -b 1+d |
*> A_1 = | d 1 |
*> | -1 d |
*> | -d 1 |
*> | -1 -d |
*> | 1 |
*> and A_22 is chosen as the k x k leading submatrix of A_2:
*> | -1 b |
*> | -b -1 |
*> | 1-d b |
*> | -b 1-d |
*> A_2 = | d 1+b |
*> | -1-b d |
*> | -d 1+b |
*> | -1+b -d |
*> | 1-d |
*> and matrix B are chosen as identity matrices (see SLATM5).
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZE
*> \verbatim
*> NSIZE is INTEGER
*> The maximum size of the matrices to use. NSIZE >= 0.
*> If NSIZE = 0, no built-in tests matrices are used, but
*> read-in test matrices are used to test SGGESX.
*> \endverbatim
*>
*> \param[in] NCMAX
*> \verbatim
*> NCMAX is INTEGER
*> Maximum allowable NMAX for generating Kroneker matrix
*> in call to CLAKF2
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. THRESH >= 0.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> The FORTRAN unit number for reading in the data file of
*> problems to solve.
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, NSIZE)
*> Used to store the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, AI, BI, Z and Q,
*> LDA >= max( 1, NSIZE ). For the read-in test,
*> LDA >= max( 1, N ), N is the size of the test matrices.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDA, NSIZE)
*> Used to store the matrix whose eigenvalues are to be
*> computed. On exit, B contains the last matrix actually used.
*> \endverbatim
*>
*> \param[out] AI
*> \verbatim
*> AI is COMPLEX array, dimension (LDA, NSIZE)
*> Copy of A, modified by CGGESX.
*> \endverbatim
*>
*> \param[out] BI
*> \verbatim
*> BI is COMPLEX array, dimension (LDA, NSIZE)
*> Copy of B, modified by CGGESX.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDA, NSIZE)
*> Z holds the left Schur vectors computed by CGGESX.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDA, NSIZE)
*> Q holds the right Schur vectors computed by CGGESX.
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX array, dimension (NSIZE)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (NSIZE)
*>
*> On exit, ALPHA/BETA are the eigenvalues.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC, LDC)
*> Store the matrix generated by subroutine CLAKF2, this is the
*> matrix formed by Kronecker products used for estimating
*> DIF.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of C. LDC >= max(1, LDA*LDA/2 ).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (LDC)
*> Singular values of C
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= 3*NSIZE*NSIZE/2
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array,
*> dimension (5*NSIZE*NSIZE/2 - 4)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (LIWORK)
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= NSIZE + 2.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (NSIZE)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B,
$ AI, BI, Z, Q, ALPHA, BETA, C, LDC, S, WORK,
$ LWORK, RWORK, IWORK, LIWORK, BWORK, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
$ NOUT, NSIZE
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
REAL RWORK( * ), S( * )
COMPLEX A( LDA, * ), AI( LDA, * ), ALPHA( * ),
$ B( LDA, * ), BETA( * ), BI( LDA, * ),
$ C( LDC, * ), Q( LDA, * ), WORK( * ),
$ Z( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL ILABAD
CHARACTER SENSE
INTEGER BDSPAC, I, IFUNC, J, LINFO, MAXWRK, MINWRK, MM,
$ MN2, NERRS, NPTKNT, NTEST, NTESTT, PRTYPE, QBA,
$ QBB
REAL ABNRM, BIGNUM, DIFTRU, PLTRU, SMLNUM, TEMP1,
$ TEMP2, THRSH2, ULP, ULPINV, WEIGHT
COMPLEX X
* ..
* .. Local Arrays ..
REAL DIFEST( 2 ), PL( 2 ), RESULT( 10 )
* ..
* .. External Functions ..
LOGICAL CLCTSX
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL CLCTSX, ILAENV, CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, CGESVD, CGET51, CGGESX, CLACPY, CLAKF2,
$ CLASET, CLATM5, XERBLA
* ..
* .. Scalars in Common ..
LOGICAL FS
INTEGER K, M, MPLUSN, N
* ..
* .. Common blocks ..
COMMON / MN / M, N, MPLUSN, K, FS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, REAL, SQRT
* ..
* .. Statement Functions ..
REAL ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Check for errors
*
IF( NSIZE.LT.0 ) THEN
INFO = -1
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -2
ELSE IF( NIN.LE.0 ) THEN
INFO = -3
ELSE IF( NOUT.LE.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.1 .OR. LDA.LT.NSIZE ) THEN
INFO = -6
ELSE IF( LDC.LT.1 .OR. LDC.LT.NSIZE*NSIZE / 2 ) THEN
INFO = -15
ELSE IF( LIWORK.LT.NSIZE+2 ) THEN
INFO = -21
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.)
*
MINWRK = 1
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
MINWRK = 3*NSIZE*NSIZE / 2
*
* workspace for cggesx
*
MAXWRK = NSIZE*( 1+ILAENV( 1, 'CGEQRF', ' ', NSIZE, 1, NSIZE,
$ 0 ) )
MAXWRK = MAX( MAXWRK, NSIZE*( 1+ILAENV( 1, 'CUNGQR', ' ',
$ NSIZE, 1, NSIZE, -1 ) ) )
*
* workspace for cgesvd
*
BDSPAC = 3*NSIZE*NSIZE / 2
MAXWRK = MAX( MAXWRK, NSIZE*NSIZE*
$ ( 1+ILAENV( 1, 'CGEBRD', ' ', NSIZE*NSIZE / 2,
$ NSIZE*NSIZE / 2, -1, -1 ) ) )
MAXWRK = MAX( MAXWRK, BDSPAC )
*
MAXWRK = MAX( MAXWRK, MINWRK )
*
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK )
$ INFO = -18
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CDRGSX', -INFO )
RETURN
END IF
*
* Important constants
*
ULP = SLAMCH( 'P' )
ULPINV = ONE / ULP
SMLNUM = SLAMCH( 'S' ) / ULP
BIGNUM = ONE / SMLNUM
THRSH2 = TEN*THRESH
NTESTT = 0
NERRS = 0
*
* Go to the tests for read-in matrix pairs
*
IFUNC = 0
IF( NSIZE.EQ.0 )
$ GO TO 70
*
* Test the built-in matrix pairs.
* Loop over different functions (IFUNC) of CGGESX, types (PRTYPE)
* of test matrices, different size (M+N)
*
PRTYPE = 0
QBA = 3
QBB = 4
WEIGHT = SQRT( ULP )
*
DO 60 IFUNC = 0, 3
DO 50 PRTYPE = 1, 5
DO 40 M = 1, NSIZE - 1
DO 30 N = 1, NSIZE - M
*
WEIGHT = ONE / WEIGHT
MPLUSN = M + N
*
* Generate test matrices
*
FS = .TRUE.
K = 0
*
CALL CLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, AI,
$ LDA )
CALL CLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, BI,
$ LDA )
*
CALL CLATM5( PRTYPE, M, N, AI, LDA, AI( M+1, M+1 ),
$ LDA, AI( 1, M+1 ), LDA, BI, LDA,
$ BI( M+1, M+1 ), LDA, BI( 1, M+1 ), LDA,
$ Q, LDA, Z, LDA, WEIGHT, QBA, QBB )
*
* Compute the Schur factorization and swapping the
* m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
* Swapping is accomplished via the function CLCTSX
* which is supplied below.
*
IF( IFUNC.EQ.0 ) THEN
SENSE = 'N'
ELSE IF( IFUNC.EQ.1 ) THEN
SENSE = 'E'
ELSE IF( IFUNC.EQ.2 ) THEN
SENSE = 'V'
ELSE IF( IFUNC.EQ.3 ) THEN
SENSE = 'B'
END IF
*
CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
CALL CGGESX( 'V', 'V', 'S', CLCTSX, SENSE, MPLUSN, AI,
$ LDA, BI, LDA, MM, ALPHA, BETA, Q, LDA, Z,
$ LDA, PL, DIFEST, WORK, LWORK, RWORK,
$ IWORK, LIWORK, BWORK, LINFO )
*
IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUT, FMT = 9999 )'CGGESX', LINFO, MPLUSN,
$ PRTYPE
INFO = LINFO
GO TO 30
END IF
*
* Compute the norm(A, B)
*
CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK,
$ MPLUSN )
CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
$ WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
ABNRM = CLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN,
$ RWORK )
*
* Do tests (1) to (4)
*
RESULT( 2 ) = ZERO
CALL CGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 1 ) )
CALL CGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 2 ) )
CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q,
$ LDA, WORK, RWORK, RESULT( 3 ) )
CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 4 ) )
NTEST = 4
*
* Do tests (5) and (6): check Schur form of A and
* compare eigenvalues with diagonals.
*
TEMP1 = ZERO
RESULT( 5 ) = ZERO
RESULT( 6 ) = ZERO
*
DO 10 J = 1, MPLUSN
ILABAD = .FALSE.
TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
$ MAX( SMLNUM, ABS1( ALPHA( J ) ),
$ ABS1( AI( J, J ) ) )+
$ ABS1( BETA( J )-BI( J, J ) ) /
$ MAX( SMLNUM, ABS1( BETA( J ) ),
$ ABS1( BI( J, J ) ) ) ) / ULP
IF( J.LT.MPLUSN ) THEN
IF( AI( J+1, J ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
IF( J.GT.1 ) THEN
IF( AI( J, J-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
IF( ILABAD ) THEN
WRITE( NOUT, FMT = 9997 )J, MPLUSN, PRTYPE
END IF
10 CONTINUE
RESULT( 6 ) = TEMP1
NTEST = NTEST + 2
*
* Test (7) (if sorting worked)
*
RESULT( 7 ) = ZERO
IF( LINFO.EQ.MPLUSN+3 ) THEN
RESULT( 7 ) = ULPINV
ELSE IF( MM.NE.N ) THEN
RESULT( 7 ) = ULPINV
END IF
NTEST = NTEST + 1
*
* Test (8): compare the estimated value DIF and its
* value. first, compute the exact DIF.
*
RESULT( 8 ) = ZERO
MN2 = MM*( MPLUSN-MM )*2
IF( IFUNC.GE.2 .AND. MN2.LE.NCMAX*NCMAX ) THEN
*
* Note: for either following two cases, there are
* almost same number of test cases fail the test.
*
CALL CLAKF2( MM, MPLUSN-MM, AI, LDA,
$ AI( MM+1, MM+1 ), BI,
$ BI( MM+1, MM+1 ), C, LDC )
*
CALL CGESVD( 'N', 'N', MN2, MN2, C, LDC, S, WORK,
$ 1, WORK( 2 ), 1, WORK( 3 ), LWORK-2,
$ RWORK, INFO )
DIFTRU = S( MN2 )
*
IF( DIFEST( 2 ).EQ.ZERO ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( DIFTRU.EQ.ZERO ) THEN
IF( DIFEST( 2 ).GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
$ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ),
$ DIFEST( 2 ) / DIFTRU )
END IF
NTEST = NTEST + 1
END IF
*
* Test (9)
*
RESULT( 9 ) = ZERO
IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
NTEST = NTEST + 1
END IF
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 20 J = 1, 9
IF( RESULT( J ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 )'CGX'
*
* Matrix types
*
WRITE( NOUT, FMT = 9994 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9993 )'unitary', '''',
$ 'transpose', ( '''', I = 1, 4 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0 ) THEN
WRITE( NOUT, FMT = 9992 )MPLUSN, PRTYPE,
$ WEIGHT, M, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9991 )MPLUSN, PRTYPE,
$ WEIGHT, M, J, RESULT( J )
END IF
END IF
20 CONTINUE
*
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
GO TO 150
*
70 CONTINUE
*
* Read in data from file to check accuracy of condition estimation
* Read input data until N=0
*
NPTKNT = 0
*
80 CONTINUE
READ( NIN, FMT = *, END = 140 )MPLUSN
IF( MPLUSN.EQ.0 )
$ GO TO 140
READ( NIN, FMT = *, END = 140 )N
DO 90 I = 1, MPLUSN
READ( NIN, FMT = * )( AI( I, J ), J = 1, MPLUSN )
90 CONTINUE
DO 100 I = 1, MPLUSN
READ( NIN, FMT = * )( BI( I, J ), J = 1, MPLUSN )
100 CONTINUE
READ( NIN, FMT = * )PLTRU, DIFTRU
*
NPTKNT = NPTKNT + 1
FS = .TRUE.
K = 0
M = MPLUSN - N
*
CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
* Compute the Schur factorization while swapping the
* m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
*
CALL CGGESX( 'V', 'V', 'S', CLCTSX, 'B', MPLUSN, AI, LDA, BI, LDA,
$ MM, ALPHA, BETA, Q, LDA, Z, LDA, PL, DIFEST, WORK,
$ LWORK, RWORK, IWORK, LIWORK, BWORK, LINFO )
*
IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUT, FMT = 9998 )'CGGESX', LINFO, MPLUSN, NPTKNT
GO TO 130
END IF
*
* Compute the norm(A, B)
* (should this be norm of (A,B) or (AI,BI)?)
*
CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, MPLUSN )
CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
$ WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
ABNRM = CLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, RWORK )
*
* Do tests (1) to (4)
*
CALL CGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 1 ) )
CALL CGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 2 ) )
CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, LDA, WORK,
$ RWORK, RESULT( 3 ) )
CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 4 ) )
*
* Do tests (5) and (6): check Schur form of A and compare
* eigenvalues with diagonals.
*
NTEST = 6
TEMP1 = ZERO
RESULT( 5 ) = ZERO
RESULT( 6 ) = ZERO
*
DO 110 J = 1, MPLUSN
ILABAD = .FALSE.
TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
$ MAX( SMLNUM, ABS1( ALPHA( J ) ), ABS1( AI( J, J ) ) )+
$ ABS1( BETA( J )-BI( J, J ) ) /
$ MAX( SMLNUM, ABS1( BETA( J ) ), ABS1( BI( J, J ) ) ) )
$ / ULP
IF( J.LT.MPLUSN ) THEN
IF( AI( J+1, J ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
IF( J.GT.1 ) THEN
IF( AI( J, J-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
IF( ILABAD ) THEN
WRITE( NOUT, FMT = 9997 )J, MPLUSN, NPTKNT
END IF
110 CONTINUE
RESULT( 6 ) = TEMP1
*
* Test (7) (if sorting worked) <--------- need to be checked.
*
NTEST = 7
RESULT( 7 ) = ZERO
IF( LINFO.EQ.MPLUSN+3 )
$ RESULT( 7 ) = ULPINV
*
* Test (8): compare the estimated value of DIF and its true value.
*
NTEST = 8
RESULT( 8 ) = ZERO
IF( DIFEST( 2 ).EQ.ZERO ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( DIFTRU.EQ.ZERO ) THEN
IF( DIFEST( 2 ).GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
$ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), DIFEST( 2 ) / DIFTRU )
END IF
*
* Test (9)
*
NTEST = 9
RESULT( 9 ) = ZERO
IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
END IF
*
* Test (10): compare the estimated value of PL and it true value.
*
NTEST = 10
RESULT( 10 ) = ZERO
IF( PL( 1 ).EQ.ZERO ) THEN
IF( PLTRU.GT.ABNRM*ULP )
$ RESULT( 10 ) = ULPINV
ELSE IF( PLTRU.EQ.ZERO ) THEN
IF( PL( 1 ).GT.ABNRM*ULP )
$ RESULT( 10 ) = ULPINV
ELSE IF( ( PLTRU.GT.THRESH*PL( 1 ) ) .OR.
$ ( PLTRU*THRESH.LT.PL( 1 ) ) ) THEN
RESULT( 10 ) = ULPINV
END IF
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 120 J = 1, NTEST
IF( RESULT( J ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 )'CGX'
*
* Matrix types
*
WRITE( NOUT, FMT = 9995 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9993 )'unitary', '''', 'transpose',
$ ( '''', I = 1, 4 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0 ) THEN
WRITE( NOUT, FMT = 9990 )NPTKNT, MPLUSN, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9989 )NPTKNT, MPLUSN, J, RESULT( J )
END IF
END IF
*
120 CONTINUE
*
130 CONTINUE
GO TO 80
140 CONTINUE
*
150 CONTINUE
*
* Summary
*
CALL ALASVM( 'CGX', NOUT, NERRS, NTESTT, 0 )
*
WORK( 1 ) = MAXWRK
*
RETURN
*
9999 FORMAT( ' CDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ')' )
*
9998 FORMAT( ' CDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', Input Example #', I2, ')' )
*
9997 FORMAT( ' CDRGSX: S not in Schur form at eigenvalue ', I6, '.',
$ / 9X, 'N=', I6, ', JTYPE=', I6, ')' )
*
9996 FORMAT( / 1X, A3, ' -- Complex Expert Generalized Schur form',
$ ' problem driver' )
*
9995 FORMAT( 'Input Example' )
*
9994 FORMAT( ' Matrix types: ', /
$ ' 1: A is a block diagonal matrix of Jordan blocks ',
$ 'and B is the identity ', / ' matrix, ',
$ / ' 2: A and B are upper triangular matrices, ',
$ / ' 3: A and B are as type 2, but each second diagonal ',
$ 'block in A_11 and ', /
$ ' each third diagonal block in A_22 are 2x2 blocks,',
$ / ' 4: A and B are block diagonal matrices, ',
$ / ' 5: (A,B) has potentially close or common ',
$ 'eigenvalues.', / )
*
9993 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
$ 'Q and Z are ', A, ',', / 19X,
$ ' a is alpha, b is beta, and ', A, ' means ', A, '.)',
$ / ' 1 = | A - Q S Z', A,
$ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
$ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
$ ' | / ( n ulp ) 4 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 5 = 1/ULP if A is not in ',
$ 'Schur form S', / ' 6 = difference between (alpha,beta)',
$ ' and diagonals of (S,T)', /
$ ' 7 = 1/ULP if SDIM is not the correct number of ',
$ 'selected eigenvalues', /
$ ' 8 = 1/ULP if DIFEST/DIFTRU > 10*THRESH or ',
$ 'DIFTRU/DIFEST > 10*THRESH',
$ / ' 9 = 1/ULP if DIFEST <> 0 or DIFTRU > ULP*norm(A,B) ',
$ 'when reordering fails', /
$ ' 10 = 1/ULP if PLEST/PLTRU > THRESH or ',
$ 'PLTRU/PLEST > THRESH', /
$ ' ( Test 10 is only for input examples )', / )
9992 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', E10.3,
$ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, F8.2 )
9991 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', E10.3,
$ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, E10.3 )
9990 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 0P, F8.2 )
9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 1P, E10.3 )
*
* End of CDRGSX
*
END