You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2089 lines
73 KiB
2089 lines
73 KiB
*> \brief \b CDRVST
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
|
* NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
|
|
* LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
|
|
* IWORK, LIWORK, RESULT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
|
|
* $ NSIZES, NTYPES
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
|
* REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
|
|
* $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
|
|
* COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
|
|
* $ V( LDU, * ), WORK( * ), Z( LDU, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CDRVST checks the Hermitian eigenvalue problem drivers.
|
|
*>
|
|
*> CHEEVD computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix,
|
|
*> using a divide-and-conquer algorithm.
|
|
*>
|
|
*> CHEEVX computes selected eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix.
|
|
*>
|
|
*> CHEEVR computes selected eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix
|
|
*> using the Relatively Robust Representation where it can.
|
|
*>
|
|
*> CHPEVD computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix in packed
|
|
*> storage, using a divide-and-conquer algorithm.
|
|
*>
|
|
*> CHPEVX computes selected eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix in packed
|
|
*> storage.
|
|
*>
|
|
*> CHBEVD computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian band matrix,
|
|
*> using a divide-and-conquer algorithm.
|
|
*>
|
|
*> CHBEVX computes selected eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian band matrix.
|
|
*>
|
|
*> CHEEV computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix.
|
|
*>
|
|
*> CHPEV computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian matrix in packed
|
|
*> storage.
|
|
*>
|
|
*> CHBEV computes all eigenvalues and, optionally,
|
|
*> eigenvectors of a complex Hermitian band matrix.
|
|
*>
|
|
*> When CDRVST is called, a number of matrix "sizes" ("n's") and a
|
|
*> number of matrix "types" are specified. For each size ("n")
|
|
*> and each type of matrix, one matrix will be generated and used
|
|
*> to test the appropriate drivers. For each matrix and each
|
|
*> driver routine called, the following tests will be performed:
|
|
*>
|
|
*> (1) | A - Z D Z' | / ( |A| n ulp )
|
|
*>
|
|
*> (2) | I - Z Z' | / ( n ulp )
|
|
*>
|
|
*> (3) | D1 - D2 | / ( |D1| ulp )
|
|
*>
|
|
*> where Z is the matrix of eigenvectors returned when the
|
|
*> eigenvector option is given and D1 and D2 are the eigenvalues
|
|
*> returned with and without the eigenvector option.
|
|
*>
|
|
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
|
*> each element NN(j) specifies one size.
|
|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
|
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
|
|
*> Currently, the list of possible types is:
|
|
*>
|
|
*> (1) The zero matrix.
|
|
*> (2) The identity matrix.
|
|
*>
|
|
*> (3) A diagonal matrix with evenly spaced entries
|
|
*> 1, ..., ULP and random signs.
|
|
*> (ULP = (first number larger than 1) - 1 )
|
|
*> (4) A diagonal matrix with geometrically spaced entries
|
|
*> 1, ..., ULP and random signs.
|
|
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
|
|
*> and random signs.
|
|
*>
|
|
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
|
|
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
|
|
*>
|
|
*> (8) A matrix of the form U* D U, where U is unitary and
|
|
*> D has evenly spaced entries 1, ..., ULP with random signs
|
|
*> on the diagonal.
|
|
*>
|
|
*> (9) A matrix of the form U* D U, where U is unitary and
|
|
*> D has geometrically spaced entries 1, ..., ULP with random
|
|
*> signs on the diagonal.
|
|
*>
|
|
*> (10) A matrix of the form U* D U, where U is unitary and
|
|
*> D has "clustered" entries 1, ULP,..., ULP with random
|
|
*> signs on the diagonal.
|
|
*>
|
|
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
|
|
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
|
|
*>
|
|
*> (13) Symmetric matrix with random entries chosen from (-1,1).
|
|
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
|
|
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
|
|
*> (16) A band matrix with half bandwidth randomly chosen between
|
|
*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
|
|
*> with random signs.
|
|
*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
|
|
*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \verbatim
|
|
*> NSIZES INTEGER
|
|
*> The number of sizes of matrices to use. If it is zero,
|
|
*> CDRVST does nothing. It must be at least zero.
|
|
*> Not modified.
|
|
*>
|
|
*> NN INTEGER array, dimension (NSIZES)
|
|
*> An array containing the sizes to be used for the matrices.
|
|
*> Zero values will be skipped. The values must be at least
|
|
*> zero.
|
|
*> Not modified.
|
|
*>
|
|
*> NTYPES INTEGER
|
|
*> The number of elements in DOTYPE. If it is zero, CDRVST
|
|
*> does nothing. It must be at least zero. If it is MAXTYP+1
|
|
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
|
|
*> defined, which is to use whatever matrix is in A. This
|
|
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
|
|
*> DOTYPE(MAXTYP+1) is .TRUE. .
|
|
*> Not modified.
|
|
*>
|
|
*> DOTYPE LOGICAL array, dimension (NTYPES)
|
|
*> If DOTYPE(j) is .TRUE., then for each size in NN a
|
|
*> matrix of that size and of type j will be generated.
|
|
*> If NTYPES is smaller than the maximum number of types
|
|
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
|
|
*> MAXTYP will not be generated. If NTYPES is larger
|
|
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
|
|
*> will be ignored.
|
|
*> Not modified.
|
|
*>
|
|
*> ISEED INTEGER array, dimension (4)
|
|
*> On entry ISEED specifies the seed of the random number
|
|
*> generator. The array elements should be between 0 and 4095;
|
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
|
*> be odd. The random number generator uses a linear
|
|
*> congruential sequence limited to small integers, and so
|
|
*> should produce machine independent random numbers. The
|
|
*> values of ISEED are changed on exit, and can be used in the
|
|
*> next call to CDRVST to continue the same random number
|
|
*> sequence.
|
|
*> Modified.
|
|
*>
|
|
*> THRESH REAL
|
|
*> A test will count as "failed" if the "error", computed as
|
|
*> described above, exceeds THRESH. Note that the error
|
|
*> is scaled to be O(1), so THRESH should be a reasonably
|
|
*> small multiple of 1, e.g., 10 or 100. In particular,
|
|
*> it should not depend on the precision (single vs. double)
|
|
*> or the size of the matrix. It must be at least zero.
|
|
*> Not modified.
|
|
*>
|
|
*> NOUNIT INTEGER
|
|
*> The FORTRAN unit number for printing out error messages
|
|
*> (e.g., if a routine returns IINFO not equal to 0.)
|
|
*> Not modified.
|
|
*>
|
|
*> A COMPLEX array, dimension (LDA , max(NN))
|
|
*> Used to hold the matrix whose eigenvalues are to be
|
|
*> computed. On exit, A contains the last matrix actually
|
|
*> used.
|
|
*> Modified.
|
|
*>
|
|
*> LDA INTEGER
|
|
*> The leading dimension of A. It must be at
|
|
*> least 1 and at least max( NN ).
|
|
*> Not modified.
|
|
*>
|
|
*> D1 REAL array, dimension (max(NN))
|
|
*> The eigenvalues of A, as computed by CSTEQR simultaneously
|
|
*> with Z. On exit, the eigenvalues in D1 correspond with the
|
|
*> matrix in A.
|
|
*> Modified.
|
|
*>
|
|
*> D2 REAL array, dimension (max(NN))
|
|
*> The eigenvalues of A, as computed by CSTEQR if Z is not
|
|
*> computed. On exit, the eigenvalues in D2 correspond with
|
|
*> the matrix in A.
|
|
*> Modified.
|
|
*>
|
|
*> D3 REAL array, dimension (max(NN))
|
|
*> The eigenvalues of A, as computed by SSTERF. On exit, the
|
|
*> eigenvalues in D3 correspond with the matrix in A.
|
|
*> Modified.
|
|
*>
|
|
*> WA1 REAL array, dimension
|
|
*>
|
|
*> WA2 REAL array, dimension
|
|
*>
|
|
*> WA3 REAL array, dimension
|
|
*>
|
|
*> U COMPLEX array, dimension (LDU, max(NN))
|
|
*> The unitary matrix computed by CHETRD + CUNGC3.
|
|
*> Modified.
|
|
*>
|
|
*> LDU INTEGER
|
|
*> The leading dimension of U, Z, and V. It must be at
|
|
*> least 1 and at least max( NN ).
|
|
*> Not modified.
|
|
*>
|
|
*> V COMPLEX array, dimension (LDU, max(NN))
|
|
*> The Housholder vectors computed by CHETRD in reducing A to
|
|
*> tridiagonal form.
|
|
*> Modified.
|
|
*>
|
|
*> TAU COMPLEX array, dimension (max(NN))
|
|
*> The Householder factors computed by CHETRD in reducing A
|
|
*> to tridiagonal form.
|
|
*> Modified.
|
|
*>
|
|
*> Z COMPLEX array, dimension (LDU, max(NN))
|
|
*> The unitary matrix of eigenvectors computed by CHEEVD,
|
|
*> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX.
|
|
*> Modified.
|
|
*>
|
|
*> WORK - COMPLEX array of dimension ( LWORK )
|
|
*> Workspace.
|
|
*> Modified.
|
|
*>
|
|
*> LWORK - INTEGER
|
|
*> The number of entries in WORK. This must be at least
|
|
*> 2*max( NN(j), 2 )**2.
|
|
*> Not modified.
|
|
*>
|
|
*> RWORK REAL array, dimension (3*max(NN))
|
|
*> Workspace.
|
|
*> Modified.
|
|
*>
|
|
*> LRWORK - INTEGER
|
|
*> The number of entries in RWORK.
|
|
*>
|
|
*> IWORK INTEGER array, dimension (6*max(NN))
|
|
*> Workspace.
|
|
*> Modified.
|
|
*>
|
|
*> LIWORK - INTEGER
|
|
*> The number of entries in IWORK.
|
|
*>
|
|
*> RESULT REAL array, dimension (??)
|
|
*> The values computed by the tests described above.
|
|
*> The values are currently limited to 1/ulp, to avoid
|
|
*> overflow.
|
|
*> Modified.
|
|
*>
|
|
*> INFO INTEGER
|
|
*> If 0, then everything ran OK.
|
|
*> -1: NSIZES < 0
|
|
*> -2: Some NN(j) < 0
|
|
*> -3: NTYPES < 0
|
|
*> -5: THRESH < 0
|
|
*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
|
|
*> -16: LDU < 1 or LDU < NMAX.
|
|
*> -21: LWORK too small.
|
|
*> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF,
|
|
*> or SORMC2 returns an error code, the
|
|
*> absolute value of it is returned.
|
|
*> Modified.
|
|
*>
|
|
*>-----------------------------------------------------------------------
|
|
*>
|
|
*> Some Local Variables and Parameters:
|
|
*> ---- ----- --------- --- ----------
|
|
*> ZERO, ONE Real 0 and 1.
|
|
*> MAXTYP The number of types defined.
|
|
*> NTEST The number of tests performed, or which can
|
|
*> be performed so far, for the current matrix.
|
|
*> NTESTT The total number of tests performed so far.
|
|
*> NMAX Largest value in NN.
|
|
*> NMATS The number of matrices generated so far.
|
|
*> NERRS The number of tests which have exceeded THRESH
|
|
*> so far (computed by SLAFTS).
|
|
*> COND, IMODE Values to be passed to the matrix generators.
|
|
*> ANORM Norm of A; passed to matrix generators.
|
|
*>
|
|
*> OVFL, UNFL Overflow and underflow thresholds.
|
|
*> ULP, ULPINV Finest relative precision and its inverse.
|
|
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
|
|
*> The following four arrays decode JTYPE:
|
|
*> KTYPE(j) The general type (1-10) for type "j".
|
|
*> KMODE(j) The MODE value to be passed to the matrix
|
|
*> generator for type "j".
|
|
*> KMAGN(j) The order of magnitude ( O(1),
|
|
*> O(overflow^(1/2) ), O(underflow^(1/2) )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
|
$ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
|
|
$ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
|
|
$ IWORK, LIWORK, RESULT, INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
|
|
$ NSIZES, NTYPES
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
|
REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
|
|
$ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
|
|
COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
|
|
$ V( LDU, * ), WORK( * ), Z( LDU, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE, TWO, TEN
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
|
|
$ TEN = 10.0E+0 )
|
|
REAL HALF
|
|
PARAMETER ( HALF = ONE / TWO )
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
|
INTEGER MAXTYP
|
|
PARAMETER ( MAXTYP = 18 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL BADNN
|
|
CHARACTER UPLO
|
|
INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
|
|
$ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
|
|
$ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
|
|
$ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
|
|
$ NTEST, NTESTT
|
|
REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
|
|
$ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
|
|
$ VL, VU
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
|
|
$ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
|
|
$ KTYPE( MAXTYP )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLARND, SSXT1
|
|
EXTERNAL SLAMCH, SLARND, SSXT1
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALASVM, CHBEV, CHBEVD, CHBEVX, CHEEV, CHEEVD,
|
|
$ CHEEVR, CHEEVX, CHET21, CHET22, CHPEV, CHPEVD,
|
|
$ CHPEVX, CLACPY, CLASET, CLATMR, CLATMS, SLAFTS,
|
|
$ XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, INT, LOG, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
|
|
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
|
|
$ 2, 3, 1, 2, 3 /
|
|
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
|
|
$ 0, 0, 4, 4, 4 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* 1) Check for errors
|
|
*
|
|
NTESTT = 0
|
|
INFO = 0
|
|
*
|
|
BADNN = .FALSE.
|
|
NMAX = 1
|
|
DO 10 J = 1, NSIZES
|
|
NMAX = MAX( NMAX, NN( J ) )
|
|
IF( NN( J ).LT.0 )
|
|
$ BADNN = .TRUE.
|
|
10 CONTINUE
|
|
*
|
|
* Check for errors
|
|
*
|
|
IF( NSIZES.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( BADNN ) THEN
|
|
INFO = -2
|
|
ELSE IF( NTYPES.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.NMAX ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDU.LT.NMAX ) THEN
|
|
INFO = -16
|
|
ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
|
|
INFO = -22
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CDRVST', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if nothing to do
|
|
*
|
|
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* More Important constants
|
|
*
|
|
UNFL = SLAMCH( 'Safe minimum' )
|
|
OVFL = SLAMCH( 'Overflow' )
|
|
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
|
|
ULPINV = ONE / ULP
|
|
RTUNFL = SQRT( UNFL )
|
|
RTOVFL = SQRT( OVFL )
|
|
*
|
|
* Loop over sizes, types
|
|
*
|
|
DO 20 I = 1, 4
|
|
ISEED2( I ) = ISEED( I )
|
|
ISEED3( I ) = ISEED( I )
|
|
20 CONTINUE
|
|
*
|
|
NERRS = 0
|
|
NMATS = 0
|
|
*
|
|
DO 1220 JSIZE = 1, NSIZES
|
|
N = NN( JSIZE )
|
|
IF( N.GT.0 ) THEN
|
|
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
LWEDC = MAX( 2*N+N*N, 2*N*N )
|
|
LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
|
|
LIWEDC = 3 + 5*N
|
|
ELSE
|
|
LWEDC = 2
|
|
LRWEDC = 8
|
|
LIWEDC = 8
|
|
END IF
|
|
ANINV = ONE / REAL( MAX( 1, N ) )
|
|
*
|
|
IF( NSIZES.NE.1 ) THEN
|
|
MTYPES = MIN( MAXTYP, NTYPES )
|
|
ELSE
|
|
MTYPES = MIN( MAXTYP+1, NTYPES )
|
|
END IF
|
|
*
|
|
DO 1210 JTYPE = 1, MTYPES
|
|
IF( .NOT.DOTYPE( JTYPE ) )
|
|
$ GO TO 1210
|
|
NMATS = NMATS + 1
|
|
NTEST = 0
|
|
*
|
|
DO 30 J = 1, 4
|
|
IOLDSD( J ) = ISEED( J )
|
|
30 CONTINUE
|
|
*
|
|
* 2) Compute "A"
|
|
*
|
|
* Control parameters:
|
|
*
|
|
* KMAGN KMODE KTYPE
|
|
* =1 O(1) clustered 1 zero
|
|
* =2 large clustered 2 identity
|
|
* =3 small exponential (none)
|
|
* =4 arithmetic diagonal, (w/ eigenvalues)
|
|
* =5 random log Hermitian, w/ eigenvalues
|
|
* =6 random (none)
|
|
* =7 random diagonal
|
|
* =8 random Hermitian
|
|
* =9 band Hermitian, w/ eigenvalues
|
|
*
|
|
IF( MTYPES.GT.MAXTYP )
|
|
$ GO TO 110
|
|
*
|
|
ITYPE = KTYPE( JTYPE )
|
|
IMODE = KMODE( JTYPE )
|
|
*
|
|
* Compute norm
|
|
*
|
|
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
|
|
*
|
|
40 CONTINUE
|
|
ANORM = ONE
|
|
GO TO 70
|
|
*
|
|
50 CONTINUE
|
|
ANORM = ( RTOVFL*ULP )*ANINV
|
|
GO TO 70
|
|
*
|
|
60 CONTINUE
|
|
ANORM = RTUNFL*N*ULPINV
|
|
GO TO 70
|
|
*
|
|
70 CONTINUE
|
|
*
|
|
CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
|
|
IINFO = 0
|
|
COND = ULPINV
|
|
*
|
|
* Special Matrices -- Identity & Jordan block
|
|
*
|
|
* Zero
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
IINFO = 0
|
|
*
|
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
|
*
|
|
* Identity
|
|
*
|
|
DO 80 JCOL = 1, N
|
|
A( JCOL, JCOL ) = ANORM
|
|
80 CONTINUE
|
|
*
|
|
ELSE IF( ITYPE.EQ.4 ) THEN
|
|
*
|
|
* Diagonal Matrix, [Eigen]values Specified
|
|
*
|
|
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
|
|
$ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.5 ) THEN
|
|
*
|
|
* Hermitian, eigenvalues specified
|
|
*
|
|
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
|
|
$ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.7 ) THEN
|
|
*
|
|
* Diagonal, random eigenvalues
|
|
*
|
|
CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
|
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
|
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.8 ) THEN
|
|
*
|
|
* Hermitian, random eigenvalues
|
|
*
|
|
CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
|
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
|
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
|
*
|
|
ELSE IF( ITYPE.EQ.9 ) THEN
|
|
*
|
|
* Hermitian banded, eigenvalues specified
|
|
*
|
|
IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
|
|
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
|
|
$ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
|
|
$ IINFO )
|
|
*
|
|
* Store as dense matrix for most routines.
|
|
*
|
|
CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
|
|
DO 100 IDIAG = -IHBW, IHBW
|
|
IROW = IHBW - IDIAG + 1
|
|
J1 = MAX( 1, IDIAG+1 )
|
|
J2 = MIN( N, N+IDIAG )
|
|
DO 90 J = J1, J2
|
|
I = J - IDIAG
|
|
A( I, J ) = U( IROW, J )
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
ELSE
|
|
IINFO = 1
|
|
END IF
|
|
*
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
|
|
$ IOLDSD
|
|
INFO = ABS( IINFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
110 CONTINUE
|
|
*
|
|
ABSTOL = UNFL + UNFL
|
|
IF( N.LE.1 ) THEN
|
|
IL = 1
|
|
IU = N
|
|
ELSE
|
|
IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
|
|
IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
|
|
IF( IL.GT.IU ) THEN
|
|
ITEMP = IL
|
|
IL = IU
|
|
IU = ITEMP
|
|
END IF
|
|
END IF
|
|
*
|
|
* Perform tests storing upper or lower triangular
|
|
* part of matrix.
|
|
*
|
|
DO 1200 IUPLO = 0, 1
|
|
IF( IUPLO.EQ.0 ) THEN
|
|
UPLO = 'L'
|
|
ELSE
|
|
UPLO = 'U'
|
|
END IF
|
|
*
|
|
* Call CHEEVD and CHEEVX.
|
|
*
|
|
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
|
|
$ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 130
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 1 and 2.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHEEVD( 'N', UPLO, N, A, LDU, D3, WORK, LWEDC,
|
|
$ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVD(N,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 130
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 3.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 120 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
120 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
130 CONTINUE
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
NTEST = NTEST + 1
|
|
*
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
|
|
IF( IL.NE.1 ) THEN
|
|
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
ELSE IF( N.GT.0 ) THEN
|
|
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
END IF
|
|
IF( IU.NE.N ) THEN
|
|
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
ELSE IF( N.GT.0 ) THEN
|
|
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
END IF
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
VL = ZERO
|
|
VU = ONE
|
|
END IF
|
|
*
|
|
CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 150
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 4 and 5.
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHEEVX( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 150
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 6.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 140 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
|
|
140 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
150 CONTINUE
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
NTEST = NTEST + 1
|
|
*
|
|
CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 160
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 7 and 8.
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
CALL CHEEVX( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 160
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 9.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
160 CONTINUE
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
NTEST = NTEST + 1
|
|
*
|
|
CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 170
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 10 and 11.
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
CALL CHEEVX( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
|
|
$ IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 170
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 170
|
|
END IF
|
|
*
|
|
* Do test 12.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
170 CONTINUE
|
|
*
|
|
* Call CHPEVD and CHPEVX.
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
* Load array WORK with the upper or lower triangular
|
|
* part of the matrix in packed form.
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 190 J = 1, N
|
|
DO 180 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
180 CONTINUE
|
|
190 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 210 J = 1, N
|
|
DO 200 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
200 CONTINUE
|
|
210 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
INDWRK = N*( N+1 ) / 2 + 1
|
|
CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
|
|
$ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
|
|
$ LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 270
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 13 and 14.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 230 J = 1, N
|
|
DO 220 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
220 CONTINUE
|
|
230 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 250 J = 1, N
|
|
DO 240 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
240 CONTINUE
|
|
250 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 2
|
|
INDWRK = N*( N+1 ) / 2 + 1
|
|
CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
|
|
$ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
|
|
$ LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 270
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 15.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 260 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
260 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
* Load array WORK with the upper or lower triangular part
|
|
* of the matrix in packed form.
|
|
*
|
|
270 CONTINUE
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 290 J = 1, N
|
|
DO 280 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
280 CONTINUE
|
|
290 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 310 J = 1, N
|
|
DO 300 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
300 CONTINUE
|
|
310 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
*
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
|
|
IF( IL.NE.1 ) THEN
|
|
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
ELSE IF( N.GT.0 ) THEN
|
|
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
END IF
|
|
IF( IU.NE.N ) THEN
|
|
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
ELSE IF( N.GT.0 ) THEN
|
|
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
|
|
$ TEN*ULP*TEMP3, TEN*RTUNFL )
|
|
END IF
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
VL = ZERO
|
|
VU = ONE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 370
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 16 and 17.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 330 J = 1, N
|
|
DO 320 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
320 CONTINUE
|
|
330 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 350 J = 1, N
|
|
DO 340 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
340 CONTINUE
|
|
350 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 370
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 18.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 360 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
|
|
360 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
370 CONTINUE
|
|
NTEST = NTEST + 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 390 J = 1, N
|
|
DO 380 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
380 CONTINUE
|
|
390 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 410 J = 1, N
|
|
DO 400 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
400 CONTINUE
|
|
410 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 460
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 19 and 20.
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 430 J = 1, N
|
|
DO 420 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
420 CONTINUE
|
|
430 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 450 J = 1, N
|
|
DO 440 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
440 CONTINUE
|
|
450 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 460
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 21.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
460 CONTINUE
|
|
NTEST = NTEST + 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 480 J = 1, N
|
|
DO 470 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
470 CONTINUE
|
|
480 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 500 J = 1, N
|
|
DO 490 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
490 CONTINUE
|
|
500 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 550
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 22 and 23.
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 520 J = 1, N
|
|
DO 510 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
510 CONTINUE
|
|
520 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 540 J = 1, N
|
|
DO 530 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
530 CONTINUE
|
|
540 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
|
|
$ IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 550
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 550
|
|
END IF
|
|
*
|
|
* Do test 24.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
550 CONTINUE
|
|
*
|
|
* Call CHBEVD and CHBEVX.
|
|
*
|
|
IF( JTYPE.LE.7 ) THEN
|
|
KD = 0
|
|
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
|
|
KD = MAX( N-1, 0 )
|
|
ELSE
|
|
KD = IHBW
|
|
END IF
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 570 J = 1, N
|
|
DO 560 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
560 CONTINUE
|
|
570 CONTINUE
|
|
ELSE
|
|
DO 590 J = 1, N
|
|
DO 580 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
580 CONTINUE
|
|
590 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
|
|
$ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 650
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 25 and 26.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 610 J = 1, N
|
|
DO 600 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
600 CONTINUE
|
|
610 CONTINUE
|
|
ELSE
|
|
DO 630 J = 1, N
|
|
DO 620 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
620 CONTINUE
|
|
630 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHBEVD( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
|
|
$ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVD(N,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 650
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 27.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 640 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
640 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
650 CONTINUE
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 670 J = 1, N
|
|
DO 660 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
660 CONTINUE
|
|
670 CONTINUE
|
|
ELSE
|
|
DO 690 J = 1, N
|
|
DO 680 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
680 CONTINUE
|
|
690 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 750
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 28 and 29.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 710 J = 1, N
|
|
DO 700 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
700 CONTINUE
|
|
710 CONTINUE
|
|
ELSE
|
|
DO 730 J = 1, N
|
|
DO 720 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
720 CONTINUE
|
|
730 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHBEVX( 'N', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,A,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 750
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 30.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 740 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
|
|
740 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
750 CONTINUE
|
|
NTEST = NTEST + 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 770 J = 1, N
|
|
DO 760 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
760 CONTINUE
|
|
770 CONTINUE
|
|
ELSE
|
|
DO 790 J = 1, N
|
|
DO 780 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
780 CONTINUE
|
|
790 CONTINUE
|
|
END IF
|
|
*
|
|
CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 840
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 31 and 32.
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 810 J = 1, N
|
|
DO 800 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
800 CONTINUE
|
|
810 CONTINUE
|
|
ELSE
|
|
DO 830 J = 1, N
|
|
DO 820 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
820 CONTINUE
|
|
830 CONTINUE
|
|
END IF
|
|
CALL CHBEVX( 'N', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,I,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 840
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 33.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
840 CONTINUE
|
|
NTEST = NTEST + 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 860 J = 1, N
|
|
DO 850 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
850 CONTINUE
|
|
860 CONTINUE
|
|
ELSE
|
|
DO 880 J = 1, N
|
|
DO 870 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
870 CONTINUE
|
|
880 CONTINUE
|
|
END IF
|
|
CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 930
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 34 and 35.
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 900 J = 1, N
|
|
DO 890 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
890 CONTINUE
|
|
900 CONTINUE
|
|
ELSE
|
|
DO 920 J = 1, N
|
|
DO 910 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
910 CONTINUE
|
|
920 CONTINUE
|
|
END IF
|
|
CALL CHBEVX( 'N', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
|
|
$ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
|
|
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,V,' // UPLO //
|
|
$ ')', IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 930
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 930
|
|
END IF
|
|
*
|
|
* Do test 36.
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
930 CONTINUE
|
|
*
|
|
* Call CHEEV
|
|
*
|
|
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')',
|
|
$ IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 950
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 37 and 38
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHEEV( 'N', UPLO, N, A, LDU, D3, WORK, LWORK, RWORK,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEV(N,' // UPLO // ')',
|
|
$ IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 950
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 39
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 940 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
940 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
950 CONTINUE
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
* Call CHPEV
|
|
*
|
|
* Load array WORK with the upper or lower triangular
|
|
* part of the matrix in packed form.
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 970 J = 1, N
|
|
DO 960 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
960 CONTINUE
|
|
970 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 990 J = 1, N
|
|
DO 980 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
980 CONTINUE
|
|
990 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
INDWRK = N*( N+1 ) / 2 + 1
|
|
CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
|
|
$ WORK( INDWRK ), RWORK, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')',
|
|
$ IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 1050
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 40 and 41.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
INDX = 1
|
|
DO 1010 J = 1, N
|
|
DO 1000 I = 1, J
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
1000 CONTINUE
|
|
1010 CONTINUE
|
|
ELSE
|
|
INDX = 1
|
|
DO 1030 J = 1, N
|
|
DO 1020 I = J, N
|
|
WORK( INDX ) = A( I, J )
|
|
INDX = INDX + 1
|
|
1020 CONTINUE
|
|
1030 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 2
|
|
INDWRK = N*( N+1 ) / 2 + 1
|
|
CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
|
|
$ WORK( INDWRK ), RWORK, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')',
|
|
$ IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1050
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 42
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 1040 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
1040 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
1050 CONTINUE
|
|
*
|
|
* Call CHBEV
|
|
*
|
|
IF( JTYPE.LE.7 ) THEN
|
|
KD = 0
|
|
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
|
|
KD = MAX( N-1, 0 )
|
|
ELSE
|
|
KD = IHBW
|
|
END IF
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 1070 J = 1, N
|
|
DO 1060 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
1060 CONTINUE
|
|
1070 CONTINUE
|
|
ELSE
|
|
DO 1090 J = 1, N
|
|
DO 1080 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
1080 CONTINUE
|
|
1090 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
|
|
$ RWORK, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')',
|
|
$ IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 1140
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 43 and 44.
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
DO 1110 J = 1, N
|
|
DO 1100 I = MAX( 1, J-KD ), J
|
|
V( KD+1+I-J, J ) = A( I, J )
|
|
1100 CONTINUE
|
|
1110 CONTINUE
|
|
ELSE
|
|
DO 1130 J = 1, N
|
|
DO 1120 I = J, MIN( N, J+KD )
|
|
V( 1+I-J, J ) = A( I, J )
|
|
1120 CONTINUE
|
|
1130 CONTINUE
|
|
END IF
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHBEV( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
|
|
$ RWORK, IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )'CHBEV(N,' // UPLO // ')',
|
|
$ IINFO, N, KD, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1140
|
|
END IF
|
|
END IF
|
|
*
|
|
1140 CONTINUE
|
|
*
|
|
* Do test 45.
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 1150 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
|
|
1150 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
|
|
NTEST = NTEST + 1
|
|
CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 1170
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 45 and 46 (or ... )
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
|
|
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CHEEVR( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,A,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1170
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 47 (or ... )
|
|
*
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 1160 J = 1, N
|
|
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
|
|
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
|
|
1160 CONTINUE
|
|
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
|
|
$ ULP*MAX( TEMP1, TEMP2 ) )
|
|
*
|
|
1170 CONTINUE
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 1180
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 48 and 49 (or +??)
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
CALL CHEEVR( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,I,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1180
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do test 50 (or +??)
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, ULP*TEMP3 )
|
|
1180 CONTINUE
|
|
*
|
|
NTEST = NTEST + 1
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
RESULT( NTEST+1 ) = ULPINV
|
|
RESULT( NTEST+2 ) = ULPINV
|
|
GO TO 1190
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do tests 51 and 52 (or +??)
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
|
|
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
|
|
*
|
|
NTEST = NTEST + 2
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
CALL CHEEVR( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
|
|
$ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
|
|
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
|
|
$ IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,V,' // UPLO //
|
|
$ ')', IINFO, N, JTYPE, IOLDSD
|
|
INFO = ABS( IINFO )
|
|
IF( IINFO.LT.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1190
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
|
|
RESULT( NTEST ) = ULPINV
|
|
GO TO 1190
|
|
END IF
|
|
*
|
|
* Do test 52 (or +??)
|
|
*
|
|
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
|
|
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
|
|
IF( N.GT.0 ) THEN
|
|
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
|
|
ELSE
|
|
TEMP3 = ZERO
|
|
END IF
|
|
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
|
|
$ MAX( UNFL, TEMP3*ULP )
|
|
*
|
|
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
|
|
*
|
|
*
|
|
*
|
|
*
|
|
* Load array V with the upper or lower triangular part
|
|
* of the matrix in band form.
|
|
*
|
|
1190 CONTINUE
|
|
*
|
|
1200 CONTINUE
|
|
*
|
|
* End of Loop -- Check for RESULT(j) > THRESH
|
|
*
|
|
NTESTT = NTESTT + NTEST
|
|
CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
|
|
$ THRESH, NOUNIT, NERRS )
|
|
*
|
|
1210 CONTINUE
|
|
1220 CONTINUE
|
|
*
|
|
* Summary
|
|
*
|
|
CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 )
|
|
*
|
|
9999 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
|
|
$ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
|
|
9998 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
|
|
$ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
|
|
$ ')' )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CDRVST
|
|
*
|
|
END
|
|
|