Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

382 lines
10 KiB

*> \brief \b DGET22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
* WI, WORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER TRANSA, TRANSE, TRANSW
* INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
* $ WORK( * ), WR( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGET22 does an eigenvector check.
*>
*> The basic test is:
*>
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*>
*> using the 1-norm. It also tests the normalization of E:
*>
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> j
*>
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*> vector. If an eigenvector is complex, as determined from WI(j)
*> nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
*> of
*> |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
*>
*> W is a block diagonal matrix, with a 1 by 1 block for each real
*> eigenvalue and a 2 by 2 block for each complex conjugate pair.
*> If eigenvalues j and j+1 are a complex conjugate pair, so that
*> WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
*> block corresponding to the pair will be:
*>
*> ( wr wi )
*> ( -wi wr )
*>
*> Such a block multiplying an n by 2 matrix ( ur ui ) on the right
*> will be the same as multiplying ur + i*ui by wr + i*wi.
*>
*> To handle various schemes for storage of left eigenvectors, there are
*> options to use A-transpose instead of A, E-transpose instead of E,
*> and/or W-transpose instead of W.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSA
*> \verbatim
*> TRANSA is CHARACTER*1
*> Specifies whether or not A is transposed.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose (= Transpose)
*> \endverbatim
*>
*> \param[in] TRANSE
*> \verbatim
*> TRANSE is CHARACTER*1
*> Specifies whether or not E is transposed.
*> = 'N': No transpose, eigenvectors are in columns of E
*> = 'T': Transpose, eigenvectors are in rows of E
*> = 'C': Conjugate transpose (= Transpose)
*> \endverbatim
*>
*> \param[in] TRANSW
*> \verbatim
*> TRANSW is CHARACTER*1
*> Specifies whether or not W is transposed.
*> = 'N': No transpose
*> = 'T': Transpose, use -WI(j) instead of WI(j)
*> = 'C': Conjugate transpose, use -WI(j) instead of WI(j)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The matrix whose eigenvectors are in E.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (LDE,N)
*> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*> are stored in the columns of E, if TRANSE = 'T' or 'C', the
*> eigenvectors are stored in the rows of E.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of the array E. LDE >= max(1,N).
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*> WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
*>
*> The real and imaginary parts of the eigenvalues of A.
*> Purely real eigenvalues are indicated by WI(j) = 0.
*> Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
*> WI(j) = - WI(j+1) non-zero; the real part is assumed to be
*> stored in the j-th row/column and the imaginary part in
*> the (j+1)-th row/column.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N*(N+1))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> j
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
$ WI, WORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANSA, TRANSE, TRANSW
INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
$ WORK( * ), WR( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
CHARACTER NORMA, NORME
INTEGER IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
$ JVEC
DOUBLE PRECISION ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
$ ULP, UNFL
* ..
* .. Local Arrays ..
DOUBLE PRECISION WMAT( 2, 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DGEMM, DLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Initialize RESULT (in case N=0)
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Precision' )
*
ITRNSE = 0
INCE = 1
NORMA = 'O'
NORME = 'O'
*
IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
NORMA = 'I'
END IF
IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
NORME = 'I'
ITRNSE = 1
INCE = LDE
END IF
*
* Check normalization of E
*
ENRMIN = ONE / ULP
ENRMAX = ZERO
IF( ITRNSE.EQ.0 ) THEN
*
* Eigenvectors are column vectors.
*
IPAIR = 0
DO 30 JVEC = 1, N
TEMP1 = ZERO
IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
$ IPAIR = 1
IF( IPAIR.EQ.1 ) THEN
*
* Complex eigenvector
*
DO 10 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
$ ABS( E( J, JVEC+1 ) ) )
10 CONTINUE
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
IPAIR = 2
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
ELSE
*
* Real eigenvector
*
DO 20 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
20 CONTINUE
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
IPAIR = 0
END IF
30 CONTINUE
*
ELSE
*
* Eigenvectors are row vectors.
*
DO 40 JVEC = 1, N
WORK( JVEC ) = ZERO
40 CONTINUE
*
DO 60 J = 1, N
IPAIR = 0
DO 50 JVEC = 1, N
IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
$ IPAIR = 1
IF( IPAIR.EQ.1 ) THEN
WORK( JVEC ) = MAX( WORK( JVEC ),
$ ABS( E( J, JVEC ) )+ABS( E( J,
$ JVEC+1 ) ) )
WORK( JVEC+1 ) = WORK( JVEC )
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
ELSE
WORK( JVEC ) = MAX( WORK( JVEC ),
$ ABS( E( J, JVEC ) ) )
IPAIR = 0
END IF
50 CONTINUE
60 CONTINUE
*
DO 70 JVEC = 1, N
ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
70 CONTINUE
END IF
*
* Norm of A:
*
ANORM = MAX( DLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
*
* Norm of E:
*
ENORM = MAX( DLANGE( NORME, N, N, E, LDE, WORK ), ULP )
*
* Norm of error:
*
* Error = AE - EW
*
CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
IPAIR = 0
IEROW = 1
IECOL = 1
*
DO 80 JCOL = 1, N
IF( ITRNSE.EQ.1 ) THEN
IEROW = JCOL
ELSE
IECOL = JCOL
END IF
*
IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
$ IPAIR = 1
*
IF( IPAIR.EQ.1 ) THEN
WMAT( 1, 1 ) = WR( JCOL )
WMAT( 2, 1 ) = -WI( JCOL )
WMAT( 1, 2 ) = WI( JCOL )
WMAT( 2, 2 ) = WR( JCOL )
CALL DGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
$ LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
IPAIR = 2
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
*
ELSE
*
CALL DAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
$ WORK( N*( JCOL-1 )+1 ), 1 )
IPAIR = 0
END IF
*
80 CONTINUE
*
CALL DGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
$ WORK, N )
*
ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
*
* Compute RESULT(1) (avoiding under/overflow)
*
IF( ANORM.GT.ERRNRM ) THEN
RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ONE / ULP
ELSE
RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
END IF
END IF
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
$ ( DBLE( N )*ULP )
*
RETURN
*
* End of DGET22
*
END